RESUMO
Variants of isocitrate dehydrogenase (IDH) 1 and 2 (IDH1/2) alter metabolism in cancer cells by catalyzing the NADPH-dependent reduction of 2-oxoglutarate (2OG) to (2R)-hydroxyglutarate. However, it is unclear how derivatives of 2OG can affect cancer cell metabolism. Here, we used synthetic C3- and C4-alkylated 2OG derivatives to investigate the substrate selectivities of the most common cancer-associated IDH1 variant (R132H IDH1), of two cancer-associated IDH2 variants (R172K IDH2, R140Q IDH2), and of WT IDH1/2. Absorbance-based, NMR, and electrochemical assays were employed to monitor WT IDH1/2 and IDH1/2 variant-catalyzed 2OG derivative turnover in the presence and absence of 2OG. Our results reveal that 2OG derivatives can serve as substrates of the investigated IDH1/2 variants, but not of WT IDH1/2, and have the potential to act as 2OG-competitive inhibitors. Kinetic parameters reveal that some 2OG derivatives, including the natural product 3-methyl-2OG, are equally or even more efficient IDH1/2 variant substrates than 2OG. Furthermore, NMR and mass spectrometry studies confirmed IDH1/2 variant-catalyzed production of alcohols in the cases of the 3-methyl-, 3-butyl-, and 3-benzyl-substituted 2OG derivatives; a crystal structure of 3-butyl-2OG with an IDH1 variant (R132C/S280F IDH1) reveals active site binding. The combined results highlight the potential for (i) IDH1/2 variant-catalyzed reduction of 2-oxoacids other than 2OG in cells, (ii) modulation of IDH1/2 variant activity by 2-oxoacid natural products, including some present in common foods, (iii) inhibition of IDH1/2 variants via active site binding rather than the established allosteric mode of inhibition, and (iv) possible use of IDH1/2 variants as biocatalysts.
Assuntos
Isocitrato Desidrogenase , Ácidos Cetoglutáricos , Humanos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Neoplasias/metabolismo , Especificidade por Substrato , Ligação Proteica/efeitos dos fármacos , CristalografiaRESUMO
UDP-GalNAc:polypeptide alphaN-acetylgalactosaminyltransferases (ppGaNTases) transfer GalNAc from UDP-GalNAc to Ser or Thr. Structural features underlying their enzymatic activity and their specificity are still unidentified. In order to get some insight into the donor substrate recognition, we used a molecular modelling approach on a portion of the catalytic site of the bovine ppGaNTase-T1. Fold recognition methods identified as appropriate templates the bovine alpha1,3galactosyltransferase and the human alpha1,3N-acetylgalactosaminyltransferase. A model of the ppGaNTase-T1 nucleotide-sugar binding site was built into which the UDP-GalNAc and the Mn2+ cation were docked. UDP-GalNAc fits best in a conformation where the GalNAc is folded back under the phosphates and is maintained in that special conformation through hydrogen bonds with R193. The ribose is found in van der Waals contacts with F124 and L189. The uracil is involved in a stacking interaction with W129 and forms a hydrogen bond with N126. The Mn2+ is found in coordination both with the phosphates of UDP and the DXH motif of the enzyme. Amino acids in contact with UDP-GalNAc in the model have been mutated and the corresponding soluble forms of the enzyme expressed in yeast. Their kinetic constants confirm the importance of these amino acids in donor substrate interactions.