Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116552, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599061

RESUMO

AIMS: Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity. METHODS AND RESULTS: NGF activates its TrkA receptor to increase Cx43 expression, phosphorylation, and localization at the plasma membrane in human pulmonary arterial smooth muscle cells, thus leading to enhanced activity of Cx43-dependent GAP junctions as shown by Lucifer Yellow dye assay transfer and fluorescence recovery after photobleaching -FRAP- experiments. Using both in vitro pharmacological and in vivo SiRNA approaches, we demonstrate that NGF-dependent increase in Cx43 expression and activity in the rat pulmonary circulation causes pulmonary artery hyperreactivity. We also show that, in a rat model of PH induced by chronic hypoxia, in vivo blockade of NGF or of its TrkA receptor significantly reduces Cx43 increased pulmonary arterial expression induced by chronic hypoxia and displays preventive effects on pulmonary arterial pressure increase and right heart hypertrophy. CONCLUSIONS: Modulation of Cx43 by NGF in pulmonary arterial smooth muscle cells contributes to NGF-induced alterations of pulmonary artery reactivity. Since NGF and its TrkA receptor play a role in vivo in Cx43 increased expression in PH induced by chronic hypoxia, these NGF/Cx43-dependent mechanisms may therefore play a significant role in human PH pathophysiology.


Assuntos
Conexina 43 , Miócitos de Músculo Liso , Fator de Crescimento Neural , Artéria Pulmonar , Animais , Humanos , Masculino , Ratos , Células Cultivadas , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Junções Comunicantes/efeitos dos fármacos , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Fator de Crescimento Neural/metabolismo , Fosforilação , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Ratos Wistar , Receptor trkA/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(46): e2205207119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343259

RESUMO

Whether ion channels experience ligand-dependent dynamic ion selectivity remains of critical importance since this could support ion channel functional bias. Tracking selective ion permeability through ion channels, however, remains challenging even with patch-clamp electrophysiology. In this study, we have developed highly sensitive bioluminescence resonance energy transfer (BRET) probes providing dynamic measurements of Ca2+ and K+ concentrations and ionic strength in the nanoenvironment of Transient Receptor Potential Vanilloid-1 Channel (TRPV1) and P2X channel pores in real time and in live cells during drug challenges. Our results indicate that AMG517, BCTC, and AMG21629, three well-known TRPV1 inhibitors, more potently inhibit the capsaicin (CAPS)-induced Ca2+ influx than the CAPS-induced K+ efflux through TRPV1. Even more strikingly, we found that AMG517, when injected alone, is a partial agonist of the K+ efflux through TRPV1 and triggers TRPV1-dependent cell membrane hyperpolarization. In a further effort to exemplify ligand bias in other families of cationic channels, using the same BRET-based strategy, we also detected concentration- and time-dependent ligand biases in P2X7 and P2X5 cationic selectivity when activated by benzoyl-adenosine triphosphate (Bz-ATP). These custom-engineered BRET-based probes now open up avenues for adding value to ion-channel drug discovery platforms by taking ligand bias into account.


Assuntos
Canais de Potencial de Receptor Transitório , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cátion TRPV/metabolismo , Ligantes , Capsaicina/farmacologia , Transferência de Energia , Viés
3.
Cells ; 11(15)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35954193

RESUMO

In intrapulmonary arteries (IPAs), mechanical forces due to blood flow control vessel tone, and these forces change during pulmonary hypertension (PH). Piezo1, a stretch-activated calcium channel, is a sensor of mechanical stress present in both endothelial cells (ECs) and smooth muscle cells (SMCs). The present study investigated the role of Piezo1 on IPA in the chronic hypoxia model of PH. Rats were raised in chronically hypoxic conditions for 1 (1W-CH, early stage) or 3 weeks (3W-CH, late-stage) of PH or in normoxic conditions (Nx). Immunofluorescence labeling and patch-clamping revealed the presence of Piezo1 in both ECs and SMCs. The Piezo1 agonist, Yoda1, induced an IPA contraction in Nx and 3W-CH. Conversely, Yoda1 induced an endothelial nitric oxide (eNOS) dependent relaxation in 1W-CH. In ECs, the Yoda1-mediated intracellular calcium concentration ([Ca2+]i) increase was greater in 1W-CH as compared to Nx. Yoda1 induced an EC hyperpolarization in 1W-CH. The eNOS levels were increased in 1W-CH IPA compared to Nx or 3W-CH PH and Yoda1 activated phosphorylation of Akt (Ser473) and eNOS (Ser1177). Thus, we demonstrated that endothelial Piezo1 contributes to intrapulmonary vascular relaxation by controlling endothelial [Ca2+]i, endothelial-dependent hyperpolarization, and Akt-eNOS pathway activation in the early stage of PH.


Assuntos
Hipertensão Pulmonar , Animais , Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/metabolismo , Ratos , Vasoconstrição/fisiologia
4.
Nanotoxicology ; 16(1): 29-51, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35090355

RESUMO

In New Caledonia, anthropic activities, such as mining, increase the natural erosion of soils in nickel mines, which in turn, releases nickel oxide nanoparticles (NiONPs) into the atmosphere. Pulmonary vascular endothelial cells represent one of the primary targets for inhaled nanoparticles. The objective of this in vitro study was to assess the cytotoxic effects of NiONPs on human pulmonary artery endothelial cells (HPAEC). Special attention will be given to the level of oxidative stress and calcium signaling, which are involved in the physiopathology of cardiovascular diseases. HPAEC were exposed to NiONPs (0.5-150 µg/cm2) for 4 or 24 h. The following different endpoints were studied: (i) ROS production using CM-H2DCF-DA probe, electron spin resonance, and MitoSOX probe; the SOD activity was also measured (ii) calcium signaling with Fluo4-AM, Rhod-2, and Fluo4-FF probes; (iii) inflammation by IL-6 production and secretion and, (iv) mitochondrial dysfunction and apoptosis with TMRM and MitoTracker probes, and AnnexinV/PI. Our results have evidenced that NiONPs induced oxidative stress in HPAEC. This was demonstrated by an increase in ROS production and a decrease in SOD activity, the two mechanisms seem to trigger a pro-inflammatory response with IL-6 secretion. In addition, NiONPs exposure altered calcium homeostasis inducing an increased cytosolic calcium concentration ([Ca2+]i) that was significantly reduced by the extracellular calcium chelator EGTA and the TRPV4 inhibitor HC-067047. Interestingly, exposure to NiONPs also altered TRPV4 activity. Finally, HPAEC exposure to NiONPs increased intracellular levels of both ROS and calcium ([Ca2+]m) in mitochondria, leading to mitochondrial dysfunction and HPAEC apoptosis.


Assuntos
Sinalização do Cálcio , Células Endoteliais , Nanopartículas Metálicas , Mitocôndrias , Estresse Oxidativo , Canais de Cátion TRPV , Cálcio/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Nanopartículas Metálicas/efeitos adversos , Mitocôndrias/patologia , Níquel/efeitos adversos , Artéria Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Canais de Cátion TRPV/metabolismo
6.
Semin Cancer Biol ; 60: 121-131, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31176682

RESUMO

CD95 (also known as Fas) is the prototype of death receptors; however, evidence suggests that this receptor mainly implements non-apoptotic signaling pathways such as NF-κB, MAPK, and PI3K that are involved in cell migration, differentiation, survival, and cytokine secretion. At least two different forms of CD95 L exist. The multi-aggregated transmembrane ligand (m-CD95 L) is cleaved by metalloproteases to release a homotrimeric soluble ligand (s-CD95 L). Unlike m-CD95 L, the interaction between s-CD95 L and its receptor CD95 fails to trigger apoptosis, but instead promotes calcium-dependent cell migration, which contributes to the accumulation of inflammatory Th17 cells in damaged organs of lupus patients and favors cancer cell invasiveness. Novel inhibitors targeting the pro-inflammatory roles of CD95/CD95 L may provide attractive therapeutic options for patients with chronic inflammatory disorders or cancer. This review discusses the roles of the CD95/CD95 L pair in cell migration and metastasis.


Assuntos
Proteína Ligante Fas/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Receptor fas/metabolismo , Apoptose , Cálcio/metabolismo , Citoesqueleto/metabolismo , Citotoxicidade Imunológica , Proteína Ligante Fas/genética , Homeostase , Humanos , Imunomodulação , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/patologia , Neoplasias/terapia , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Ligação Proteica , Transdução de Sinais , Receptor fas/genética
7.
Nat Chem Biol ; 14(12): 1079-1089, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30429604

RESUMO

CD95L is a transmembrane ligand (m-CD95L) that is cleaved by metalloproteases to release a soluble ligand (s-CD95L). Unlike m-CD95L, interaction between s-CD95L and CD95 fails to recruit caspase-8 and FADD to trigger apoptosis and instead induces a Ca2+ response via docking of PLCγ1 to the calcium-inducing domain (CID) within CD95. This signaling pathway induces accumulation of inflammatory Th17 cells in damaged organs of lupus patients, thereby aggravating disease pathology. A large-scale screen revealed that the HIV protease inhibitor ritonavir is a potent disruptor of the CD95-PLCγ1 interaction. A structure-activity relationship approach highlighted that ritonavir is a peptidomimetic that shares structural characteristics with CID with respect to docking to PLCγ1. Thus, we synthesized CID peptidomimetics abrogating both the CD95-driven Ca2+ response and transmigration of Th17 cells. Injection of ritonavir and the CID peptidomimetic into lupus mice alleviated clinical symptoms, opening a new avenue for the generation of drugs for lupus patients.


Assuntos
Inflamação/prevenção & controle , Peptidomiméticos/farmacologia , Fosfolipase C gama/metabolismo , Células Th17/efeitos dos fármacos , Receptor fas/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/etiologia , Masculino , Camundongos Mutantes , Simulação de Acoplamento Molecular , Peptidomiméticos/química , Fosfolipase C gama/genética , Domínios Proteicos , Ritonavir/química , Ritonavir/farmacologia , Relação Estrutura-Atividade , Células Th17/metabolismo , Células Th17/patologia , Tiazóis/química , Tiazóis/farmacologia , Receptor fas/genética
8.
Cancers (Basel) ; 10(11)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441794

RESUMO

By inhibiting Insulin-Like Growth Factor-1-Receptor (IGF-1R) signaling, Klotho (KL) acts like an aging- and tumor-suppressor. We investigated whether KL impacts the aggressiveness of liposarcomas, in which IGF-1R signaling is frequently upregulated. Indeed, we observed that a higher KL expression in liposarcomas is associated with a better outcome for patients. Moreover, KL is downregulated in dedifferentiated liposarcomas (DDLPS) compared to well-differentiated tumors and adipose tissue. Because DDLPS are high-grade tumors associated with poor prognosis, we examined the potential of KL as a tool for overcoming therapy resistance. First, we confirmed the attenuation of IGF-1-induced calcium (Ca2+)-response and Extracellular signal-Regulated Kinase 1/2 (ERK1/2) phosphorylation in KL-overexpressing human DDLPS cells. KL overexpression also reduced cell proliferation, clonogenicity, and increased apoptosis induced by gemcitabine, thapsigargin, and ABT-737, all of which are counteracted by IGF-1R-dependent signaling and activate Ca2+-dependent endoplasmic reticulum (ER) stress. Then, we monitored cell death and cytosolic Ca2+-responses and demonstrated that KL increases the reticular Ca2+-leakage by maintaining TRPC6 at the ER and opening the translocon. Only the latter is necessary for sensitizing DDLPS cells to reticular stressors. This was associated with ERK1/2 inhibition and could be mimicked with IGF-1R or MEK inhibitors. These observations provide a new therapeutic strategy in the management of DDLPS.

9.
Methods Mol Biol ; 1557: 79-93, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28078584

RESUMO

Intracellular calcium signals regulate cell function and cell survival by controlling many processes. CD95 engagement results in distinct intracellular calcium signals that control the cell fate, apoptosis, or survival, depending on the ligand (membrane or soluble). Intracellular calcium determination is an exquisite readout to explore the molecular mechanisms elicited by CD95 engagement. The most widely applied methods for studying calcium signaling pathways use fluorescent indicators and imaging methods with fluorescence microscopy. This technical approach, however, requires many precautions that we discuss in this chapter.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Receptor fas/metabolismo , Linhagem Celular , Proteína Ligante Fas/metabolismo , Humanos , Microscopia Confocal , Mitocôndrias/metabolismo , Imagem Molecular/métodos , Ligação Proteica
10.
Oncotarget ; 8(2): 3181-3196, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27911858

RESUMO

Selective Serotonin Reuptake Inhibitor antidepressants, such as fluoxetine (Prozac), have been shown to induce cell death in cancer cells, paving the way for their potential use as cancer therapy. These compounds are able to increase cytosolic calcium concentration ([Ca2+]cyt), but the involved mechanisms and their physiological consequences are still not well understood. Here, we show that fluoxetine induces an increase in [Ca2+]cyt by emptying the endoplasmic reticulum (ER) through the translocon, an ER Ca2+ leakage structure. Our data also show that fluoxetine inhibits oxygen consumption and lowers mitochondrial ATP. This latter is essential for Ca2+ reuptake into the ER, and we postulated therefore that the fluoxetine-induced decrease in mitochondrial ATP production results in the emptying of the ER, leading to capacitative calcium entry. Furthermore, Ca2+ quickly accumulated in the mitochondria, leading to mitochondrial Ca2+ overload and cell death. We found that fluoxetine could induce an early necrosis in human peripheral blood lymphocytes and Jurkat cells, and could also induce late apoptosis, especially in the tumor cell line. These results shed light on fluoxetine-induced cell death and its potential use in cancer treatment.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Cálcio/metabolismo , Metabolismo Energético/efeitos dos fármacos , Fluoxetina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Necrose/induzido quimicamente , Necrose/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Imagem Molecular , Consumo de Oxigênio , Fosfoinositídeo Fosfolipase C/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Immunity ; 45(1): 209-23, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27438772

RESUMO

CD95 ligand (CD95L) is expressed by immune cells and triggers apoptotic death. Metalloprotease-cleaved CD95L (cl-CD95L) is released into the bloodstream but does not trigger apoptotic signaling. Hence, the pathophysiological role of cl-CD95L remains unclear. We observed that skin-derived endothelial cells from systemic lupus erythematosus (SLE) patients expressed CD95L and that after cleavage, cl-CD95L promoted T helper 17 (Th17) lymphocyte transmigration across the endothelial barrier at the expense of T regulatory cells. T cell migration relied on a direct interaction between the CD95 domain called calcium-inducing domain (CID) and the Src homology 3 domain of phospholipase Cγ1. Th17 cells stimulated with cl-CD95L produced sphingosine-1-phosphate (S1P), which promoted endothelial transmigration by activating the S1P receptor 3. We generated a cell-penetrating CID peptide that prevented Th17 cell transmigration and alleviated clinical symptoms in lupus mice. Therefore, neutralizing the CD95 non-apoptotic signaling pathway could be an attractive therapeutic approach for SLE treatment.


Assuntos
Sinalização do Cálcio , Inflamação/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Fosfolipase C gama/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Receptor fas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos MRL lpr , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fosfolipase C gama/genética , Domínios e Motivos de Interação entre Proteínas/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Transcriptoma , Migração Transendotelial e Transepitelial , Receptor fas/genética
12.
J Immunol ; 195(5): 2207-15, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26202984

RESUMO

The anti-CD20 mAb, rituximab, is routinely used to treat B cell malignancies. However, a majority of patients relapse. An improvement in the complete response was obtained by combining rituximab with chemotherapy, at the cost of increased toxicity. We reported that rituximab induced the colocalization of both the Orai1 Ca(2+) release-activated Ca(2+) channel (CRAC) and the endoplasmic reticulum Ca(2+) sensor stromal interaction molecule 1 with CD20 and CD95 into a cluster, eliciting a polarized store-operated Ca(2+) entry (SOCE). We observed that blocking this Ca(2+) entry with downregulation of Orai1, pharmacological inhibitors, or reducing calcemia with hypocalcemic drugs sensitized human B lymphoma cell lines and primary human lymphoma cells to rituximab-induced apoptosis in vitro, and improved the antitumoral effect of rituximab in xenografted mice. This revealed that Ca(2+) entry exerted a negative feedback loop on rituximab-induced apoptosis, suggesting that associating CRAC channel inhibitors or hypocalcemic agents with rituximab may improve the treatment of patients with B cell malignancies. The calcium-dependent proteins involved in this process appear to vary according to the B lymphoma cell type, suggesting that CRAC-channel targeting is likely to be more efficient than calcium-dependent protein targeting.


Assuntos
Apoptose/efeitos dos fármacos , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Linfoma não Hodgkin/tratamento farmacológico , Rituximab/farmacologia , Receptor fas/metabolismo , Animais , Antígenos CD20/imunologia , Antígenos CD20/metabolismo , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Western Blotting , Canais de Cálcio/genética , Linhagem Celular Tumoral , Difosfonatos/farmacologia , Retículo Endoplasmático/metabolismo , Feminino , Células HEK293 , Humanos , Imidazóis/farmacologia , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/patologia , Proteínas de Membrana/metabolismo , Camundongos Knockout , Microscopia Confocal , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Interferência de RNA , Rituximab/administração & dosagem , Molécula 1 de Interação Estromal , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Zoledrônico
13.
Cancer Res ; 73(22): 6711-21, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24072745

RESUMO

Triple-negative breast cancers (TNBC) lacking estrogen and progesterone receptors and HER2 amplification have a relatively high risk of metastatic dissemination, but the mechanistic basis for this risk is not understood. Here, we report that serum levels of CD95 ligand (CD95L) are higher in patients with TNBC than in other patients with breast cancer. Metalloprotease-mediated cleavage of CD95L expressed by endothelial cells surrounding tumors generates a gradient that promotes cell motility due to the formation of an unconventional CD95-containing receptosome called the motility-inducing signaling complex. The formation of this complex was instrumental for Nox3-driven reactive oxygen species generation. Mechanistic investigations revealed a Yes-Orai1-EGFR-PI3K pathway that triggered migration of TNBC cells exposed to CD95L. Our findings establish a prometastatic function for metalloprotease-cleaved CD95L in TNBCs, revisiting its role in carcinogenesis.


Assuntos
Adenocarcinoma/patologia , Proteína Ligante Fas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Adenocarcinoma/metabolismo , Animais , Antígenos de Superfície/metabolismo , Movimento Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Metástase Neoplásica , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas
14.
Proc Natl Acad Sci U S A ; 108(47): 19072-7, 2011 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-22065776

RESUMO

The death receptor CD95 plays a pivotal role in immune surveillance and immune tolerance. Binding of CD95L to CD95 leads to recruitment of the adaptor protein Fas-associated death domain protein (FADD), which in turn aggregates caspase-8 and caspase-10. Efficient formation of the CD95/FADD/caspase complex, known as the death-inducing signaling complex (DISC), culminates in the induction of apoptosis. We show that cells exposed to CD95L undergo a reorganization of the plasma membrane in which the Ca(2+) release-activated Ca(2+) channel Orai1 and the endoplasmic reticulum-resident activator stromal interaction molecule 1 colocalize with CD95 into a micrometer-sized cluster in which the channel elicits a polarized entry of calcium. Orai1 knockdown and expression of a dominant negative construct (Orai1E106A) reveal that on CD95 engagement, the Orai1-driven localized Ca(2+) influx is fundamental to recruiting the Ca(2+)-dependent protein kinase C (PKC) ß2 to the DISC. PKCß2 in turn transiently holds the complex in an inactive status, preventing caspase activation and transmission of the apoptotic signal. This study identifies a biological role of Ca(2+) and the Orai1 channel that drives a transient negative feedback loop, introducing a lag phase in the early steps of the CD95 signal. We suggest that these localized events provide a time of decision to prevent accidental cell death.


Assuntos
Apoptose/fisiologia , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Complexos Multiproteicos/metabolismo , Proteína Quinase C/metabolismo , Receptor fas/metabolismo , Western Blotting , Caspase 10/metabolismo , Caspase 8/metabolismo , Linhagem Celular , Proteína Ligante Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Citometria de Fluxo , Humanos , Imunoprecipitação , Microscopia Confocal , Proteína ORAI1 , Proteína Quinase C beta , Estatísticas não Paramétricas
15.
PLoS Biol ; 9(6): e1001090, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21713032

RESUMO

Patients affected by chronic inflammatory disorders display high amounts of soluble CD95L. This homotrimeric ligand arises from the cleavage by metalloproteases of its membrane-bound counterpart, a strong apoptotic inducer. In contrast, the naturally processed CD95L is viewed as an apoptotic antagonist competing with its membrane counterpart for binding to CD95. Recent reports pinpointed that activation of CD95 may attract myeloid and tumoral cells, which display resistance to the CD95-mediated apoptotic signal. However, all these studies were performed using chimeric CD95Ls (oligomerized forms), which behave as the membrane-bound ligand and not as the naturally processed CD95L. Herein, we examine the biological effects of the metalloprotease-cleaved CD95L on CD95-sensitive activated T-lymphocytes. We demonstrate that cleaved CD95L (cl-CD95L), found increased in sera of systemic lupus erythematosus (SLE) patients as compared to that of healthy individuals, promotes the formation of migrating pseudopods at the leading edge of which the death receptor CD95 is capped (confocal microscopy). Using different migration assays (wound healing/Boyden Chamber/endothelial transmigration), we uncover that cl-CD95L promotes cell migration through a c-yes/Ca²âº/PI3K-driven signaling pathway, which relies on the formation of a CD95-containing complex designated the MISC for Motility-Inducing Signaling Complex. These findings revisit the role of the metalloprotease-cleaved CD95L and emphasize that the increase in cl-CD95L observed in patients affected by chronic inflammatory disorders may fuel the local or systemic tissue damage by promoting tissue-filtration of immune cells.


Assuntos
Movimento Celular/imunologia , Proteína Ligante Fas/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células HEK293 , Humanos , Lúpus Eritematoso Sistêmico/sangue , Pseudópodes/fisiologia , Transdução de Sinais , Migração Transendotelial e Transepitelial/fisiologia , Receptor fas/imunologia , Receptor fas/metabolismo , Quinases da Família src/fisiologia
16.
Cell Calcium ; 48(5): 251-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21035852

RESUMO

Stretch-activated channels (SACs) act as membrane mechanotransducers since they convert physical forces into biological signals and hence into a cell response. Pulmonary arterial smooth muscle cells (PASMCs) are continuously exposed to mechanical stimulations e.g., compression and stretch, that are enhanced under conditions of pulmonary arterial hypertension (PAH). Using the patch-clamp technique (cell-attached configuration) in PASMCs, we showed that applying graded negative pressures (from 0 to -60 mmHg) to the back end of the patch pipette increases occurrence and activity of SACs. The current-voltage relationship (from -80 to +40 mV) was almost linear with a reversal potential of 1 mV and a slope conductance of 34 pS. SACs were inhibited in the presence of GsMTx-4, a specific SACs blocker. Using microspectrofluorimetry (indo-1), we found that hypotonic-induced cell swelling increases intracellular Ca(2+) concentration ([Ca(2+)](i)). This [Ca(2+)](i) increase was markedly inhibited in the absence of external Ca(2+) or in the presence of the following blockers of SACs: gadolinium, streptomycin, and GsMTx-4. Interestingly, in chronically hypoxic rats, an animal model of PAH, SACs were more active and hypotonic-induced calcium response in PASMCs was significantly higher (nearly a two-fold increase). Moreover, unlike in normoxic rats, intrapulmonary artery rings from hypoxic rats mounted in a Mulvany myograph, exhibited a myogenic tone sensitive to SAC blockers. In conclusion, this work demonstrates that SACs in rat PASMCs can be activated by membrane stretch as well as hypotonic stimulation and are responsible for [Ca(2+)](i) increase. The link between SACs activation-induced calcium response and myogenic tone in chronically hypoxic rats suggests that SACs are an important element for the increased pulmonary vascular tone in PAH and that they may represent a molecular target for PAH treatment.


Assuntos
Canais de Cálcio/fisiologia , Hipóxia/fisiopatologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Pressorreceptores/fisiologia , Artéria Pulmonar/fisiologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Células Cultivadas , Hipertensão Pulmonar Primária Familiar , Gadolínio/farmacologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Soluções Hipotônicas , Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Mecanotransdução Celular , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Pressorreceptores/efeitos dos fármacos , Pressorreceptores/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Ratos , Venenos de Aranha/farmacologia , Estreptomicina/farmacologia
17.
J Physiol ; 575(Pt 3): 913-24, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16825296

RESUMO

In skeletal muscle, Ca(2+) is implicated in contraction, and in regulation of gene expression. An alteration of [Ca(2+)](i) homeostasis is responsible, at least partially, for the muscle degeneration that occurs after eccentric contractions in Duchenne muscular dystrophy, a disease characterized by the loss of the cytoskeletal protein dystrophin. Using patch clamp in the cell-attached configuration, we characterized the store-operated channels (SOCs) and the stretch-activated channels (SACs) present in isolated mouse skeletal muscle. SOCs were voltage independent, had a unitary conductance between 7 and 8 pS (110 mm Ca(2+) in the pipette), and their open probability increased when the sarcoplasmic reticulum was depleted by thapsigargin. These SOCs were identical to those previously described in the pathophysiology of Duchenne muscular dystrophy. Under the same experimental conditions, we detected a channel activity that was increased by applying a negative pressure to the patch electrode. The SACs responsible for this current had the same unitary conductance and current-voltage relationship as those observed for SOCs. SOCs and SACs had a similar sensitivity to pharmacological agents such as Gd(3+), SKF-96365, 2-aminoethoxydiphenyl borate and GsMTx4 toxin. Moreover, stimulation with IGF-1 increased the occurrence of the activity of both channel types. Together, these observations suggest that SOCs and SACs might belong to the same population or share common constituents. From a functional point of view, treatment of soleus muscle with SKF-96365 or GsMTx4 toxin increased its sensitivity to a fatigue protocol, suggesting that the influx of Ca(2+) that occurs through these channels during contraction is also involved in force maintaining during repeated stimulations.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Fibras Musculares Esqueléticas/metabolismo , Fusos Musculares/metabolismo , Músculo Esquelético/metabolismo , Aminoquinolinas/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular , Ativação do Canal Iônico , Potenciais da Membrana , Camundongos , Contração Muscular , Fadiga Muscular , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Peptídeos/farmacologia , Reflexo de Estiramento , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Venenos de Aranha/farmacologia , Tapsigargina/farmacologia
18.
Cell Calcium ; 39(5): 401-15, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16529812

RESUMO

The mammalian homologues of the Drosophila transient receptor potential (TRP) represent a superfamily of ion channels involved in Ca(2+) homeostasis. Several members of this family are activated either by a depletion of the internal stores of Ca(2+) or by stimulation of G protein-coupled receptors. In androgen responsive prostate cancer cell line LNCaP, TRPC1, TRPC4 and/or TRPV6 have been reported to function as store-operated channels (SOCs) while TRPC3 might be involved in the response to agonist stimulation, possibly through the induction of diacylglycerol production by phospholipase C. However, the control of expression of these TRP proteins is largely unknown. In the present study, we have investigated if the expression of the TRP proteins possibly involved in the capacitative influx of calcium is influenced by the contents of Ca(2+) in the endoplasmic reticulum. Using real-time PCR and Western blot techniques, we show that the expression of TRPC1, TRPC3 and TRPV6 proteins increases after a prolonged (24-48 h) depletion of the stores with thapsigargin. The upregulation of TRPC1 and TRPC3 depends on the store contents level and involves the activation of the Ca(2+)/calmodulin/calcineurin/NFAT pathway. Functionally, cells overexpressing TRPC1, TRPC3 and TRPV6 channels after a prolonged depletion of the stores showed an increased [Ca(2+)](i) response to alpha-adrenergic stimulation. However, the store-operated entry of calcium was unchanged. The isolated overexpression of TRPV6 (without overexpression of TRPC1 and TRPC3) did not produce this increased response to agonists, therefore suggesting that TRPC1 and/or TRPC3 proteins are responsible for the response to alpha-adrenergic stimulation but that TRPC1, TPRC3 and TRPV6 proteins, expressed alone or concomitantly, are not sufficient for SOC formation.


Assuntos
Sinalização do Cálcio , Cálcio/fisiologia , Canais de Cátion TRPC/genética , Canais de Cátion TRPV/genética , Agonistas alfa-Adrenérgicos/metabolismo , Agonistas alfa-Adrenérgicos/farmacologia , Western Blotting , Calcineurina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Calmodulina/metabolismo , Linhagem Celular Tumoral , Citosol/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/metabolismo , Masculino , Modelos Biológicos , Fatores de Transcrição NFATC/metabolismo , Reação em Cadeia da Polimerase , Neoplasias da Próstata/metabolismo , Isoformas de Proteínas/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPV/metabolismo , Tapsigargina/metabolismo , Tapsigargina/farmacologia , Transcrição Gênica
19.
Mol Biol Cell ; 16(5): 2424-32, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15772159

RESUMO

Bcl-2 family proteins regulate apoptosis, in part, by controlling formation of the mitochondrial apoptosis-induced channel (MAC), which is a putative cytochrome c release channel induced early in the intrinsic apoptotic pathway. This channel activity was never observed in Bcl-2-overexpressing cells. Furthermore, MAC appears when Bax translocates to mitochondria and cytochrome c is released in cells dying by intrinsic apoptosis. Bax is a component of MAC of staurosporine-treated HeLa cells because MAC activity is immunodepleted by Bax antibodies. MAC is preferentially associated with oligomeric, not monomeric, Bax. The single channel behavior of recombinant oligomeric Bax and MAC is similar. Both channel activities are modified by cytochrome c, consistent with entrance of this protein into the pore. The mean conductance of patches of mitochondria isolated after green fluorescent protein-Bax translocation is significantly higher than those from untreated cells, consistent with onset of MAC activity. In contrast, the mean conductance of patches of mitochondria indicates MAC activity is present in apoptotic cells deficient in Bax but absent in apoptotic cells deficient in both Bax and Bak. These findings indicate Bax is a component of MAC in staurosporine-treated HeLa cells and suggest Bax and Bak are functionally redundant as components of MAC.


Assuntos
Citocromos c/metabolismo , Flavoproteínas/química , Flavoproteínas/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Fator de Indução de Apoptose , Citocromos c/farmacologia , Flavoproteínas/genética , Células HeLa , Hemoglobinas/metabolismo , Humanos , Canais Iônicos/genética , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Estrutura Quaternária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonuclease Pancreático/metabolismo , Estaurosporina/farmacologia , Proteína X Associada a bcl-2
20.
J Neurophysiol ; 91(3): 1203-16, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14586031

RESUMO

Prolactin (PRL) is involved in numerous biological processes in peripheral tissues and the brain. Although numerous studies have been conducted to elucidate the signal transduction pathways associated with the PRL receptor, very few have examined the role of ion conductances in PRL actions. We used the patch-clamp technique in "whole cell" configuration and microspectrofluorimetry to investigate the effects of PRL on membrane ion conductances in the U87-MG human malignant astrocytoma cell line, which naturally expresses the PRL receptor. We found that a physiological concentration (4 nM) of PRL exerted a biphasic action on membrane conductances. First, PRL activated a Ca(2+)-dependent K(+) current that was sensitive to CTX and TEA. This current depended on PRL-induced Ca(2+) mobilization, through a JAK2-dependent pathway from a thapsigargin- and 2-APB-sensitive Ca(2+) pool. Second, PRL also activated an inwardly directed current, mainly due to the stimulation of calcium influx via nickel- and 2-APB-sensitive calcium channels. Both phases resulted in membrane hyperpolarizations, mainly through the activation of Ca(2+)-dependent K(+) channels. As shown by combined experiments (electrophysiology and microspectrofluorimetry), the PRL-induced Ca(2+) influx increased with cell membrane hyperpolarization and conversely decreased with cell membrane depolarization. Thus PRL-induced membrane hyperpolarizations facilitated Ca(2+) influx through voltage-independent Ca(2+) channels. Finally, PRL also activated a DIDS-sensitive Cl(-) current, which may participate in the PRL-induced hyperpolarization. These PRL-induced conductance activations are probably related to the PRL proliferative effect we have already described in U87-MG cells.


Assuntos
Astrocitoma/fisiopatologia , Neoplasias Encefálicas/fisiopatologia , Canais Iônicos/efeitos dos fármacos , Prolactina/farmacologia , Proteínas Proto-Oncogênicas , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/fisiologia , Linhagem Celular Tumoral , Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/fisiologia , Eletrofisiologia , Humanos , Janus Quinase 2 , Potenciais da Membrana/efeitos dos fármacos , Níquel/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/fisiologia , Proteínas Tirosina Quinases/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA