Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 14(8): 3365-3386, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477123

RESUMO

TP53 is a master regulator of many signaling and apoptotic pathways involved in: aging, cell cycle progression, gene regulation, growth, apoptosis, cellular senescence, DNA repair, drug resistance, malignant transformation, metastasis, and metabolism. Most pancreatic cancers are classified as pancreatic ductal adenocarcinomas (PDAC). The tumor suppressor gene TP53 is mutated frequently (50-75%) in PDAC. Different types of TP53 mutations have been observed including gain of function (GOF) point mutations and various deletions of the TP53 gene resulting in lack of the protein expression. Most PDACs have point mutations at the KRAS gene which result in constitutive activation of KRas and multiple downstream signaling pathways. It has been difficult to develop specific KRas inhibitors and/or methods that result in recovery of functional TP53 activity. To further elucidate the roles of TP53 in drug-resistance of pancreatic cancer cells, we introduced wild-type (WT) TP53 or a control vector into two different PDAC cell lines. Introduction of WT-TP53 increased the sensitivity of the cells to multiple chemotherapeutic drugs, signal transduction inhibitors, drugs and nutraceuticals and influenced key metabolic properties of the cells. Therefore, TP53 is a key molecule which is critical in drug sensitivity and metabolism of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Proliferação de Células , Suplementos Nutricionais , Receptores ErbB/genética , Mutação com Ganho de Função , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína Supressora de Tumor p53 , Neoplasias Pancreáticas
2.
Cells ; 11(5)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269416

RESUMO

The TP53 tumor suppressor is mutated in ~75% of pancreatic cancers. The mutant TP53 protein in pancreatic ductal adenocarcinomas (PDAC) promotes tumor growth and metastasis. Attempts have been made to develop molecules that restore at least some of the properties of wild-type (WT) TP53. APR-246 is one such molecule, and it is referred to as a mutant TP53 reactivator. To understand the potential of APR-246 to sensitize PDAC cells to chemotherapy, we introduced a vector encoding WT-TP53 into two PDAC cell lines, one lacking the expression of TP53 (PANC-28) and one with a gain-of-function (GOF) mutant TP53 (MIA-PaCa-2). APR-246 increased drug sensitivity in the cells containing either a WT or mutant TP53 protein with GOF activity, but not in cells that lacked TP53. The introduction of WT-T53 into PANC-28 cells increased their sensitivity to the TP53 reactivator, chemotherapeutic drugs, and signal transduction inhibitors. The addition of WT-TP53 to PDAC cells with GOF TP53 also increased their sensitivity to the drugs and therapeutics, indicating that APR-246 could function in cells with WT-TP53 and GOF TP53. These results highlight the importance of knowledge of the type of TP53 mutation that is present in cancer patients before the administration of drugs which function through the reactivation of TP53.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Quinuclidinas/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas
3.
Biomolecules ; 12(2)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35204775

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer. In ~75% of PDAC, the tumor suppressor TP53 gene is mutated. Novel approaches to treat cancer involve compounds called mutant TP53 reactivators. They interact with mutant TP53 proteins and restore some of their growth suppressive properties, but they may also interact with other proteins, e.g., TP63 and TP73. We examined the ability of the TP53 reactivator APR-246 to interact with eleven modified berberine compounds (NAX compounds) in the presence and absence of WT-TP53 in two PDAC cell lines: the MIA-PaCa-2, which has gain of function (GOF) TP53 mutations on both alleles, and PANC-28, which lacks expression of the WT TP53 protein. Our results indicate the TP53 reactivator-induced increase in therapeutic potential of many modified berberines.


Assuntos
Berberina , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteína Supressora de Tumor p53 , Berberina/farmacologia , Berberina/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Quinuclidinas , Proteína Supressora de Tumor p53/genética
4.
Cells ; 10(8)2021 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34440861

RESUMO

Glycogen synthase kinase 3 (GSK3) was initially isolated as a critical protein in energy metabolism. However, subsequent studies indicate that GSK-3 is a multi-tasking kinase that links numerous signaling pathways in a cell and plays a vital role in the regulation of many aspects of cellular physiology. As a regulator of actin and tubulin cytoskeleton, GSK3 influences processes of cell polarization, interaction with the extracellular matrix, and directional migration of cells and their organelles during the growth and development of an animal organism. In this review, the roles of GSK3-cytoskeleton interactions in brain development and pathology, migration of healthy and cancer cells, and in cellular trafficking of mitochondria will be discussed.


Assuntos
Citoesqueleto/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Actinas/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Movimento Celular , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Tubulina (Proteína)/metabolismo
5.
Cells ; 10(4)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917370

RESUMO

Glycogen synthase kinase-3 (GSK-3) is a regulator of signaling pathways. KRas is frequently mutated in pancreatic cancers. The growth of certain pancreatic cancers is KRas-dependent and can be suppressed by GSK-3 inhibitors, documenting a link between KRas and GSK-3. To further elucidate the roles of GSK-3ß in drug-resistance, we transfected KRas-dependent MIA-PaCa-2 pancreatic cells with wild-type (WT) and kinase-dead (KD) forms of GSK-3ß. Transfection of MIA-PaCa-2 cells with WT-GSK-3ß increased their resistance to various chemotherapeutic drugs and certain small molecule inhibitors. Transfection of cells with KD-GSK-3ß often increased therapeutic sensitivity. An exception was observed with cells transfected with WT-GSK-3ß and sensitivity to the BCL2/BCLXL ABT737 inhibitor. WT-GSK-3ß reduced glycolytic capacity of the cells but did not affect the basal glycolysis and mitochondrial respiration. KD-GSK-3ß decreased both basal glycolysis and glycolytic capacity and reduced mitochondrial respiration in MIA-PaCa-2 cells. As a comparison, the effects of GSK-3 on MCF-7 breast cancer cells, which have mutant PIK3CA, were examined. KD-GSK-3ß increased the resistance of MCF-7 cells to chemotherapeutic drugs and certain signal transduction inhibitors. Thus, altering the levels of GSK-3ß can have dramatic effects on sensitivity to drugs and signal transduction inhibitors which may be influenced by the background of the tumor.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Suplementos Nutricionais , Glicogênio Sintase Quinase 3 beta/metabolismo , Terapia de Alvo Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Adenilato Quinase/metabolismo , Antineoplásicos/farmacologia , Berberina/farmacologia , Berberina/uso terapêutico , Compostos de Bifenilo/farmacologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Progressão da Doença , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Glicólise/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Células MCF-7 , Malária/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico , Metástase Neoplásica , Nitrofenóis/farmacologia , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Ensaio Tumoral de Célula-Tronco , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo , Gencitabina
6.
Biochim Biophys Acta Mol Cell Res ; 1867(10): 118770, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32524999

RESUMO

Glycogen synthetase kinase-3 (GSK-3) and microRNAs (miRs) affect many critical signaling pathways important in cell growth. GSK-3 is a serine/threonine (S/T) protein kinase. Often when GSK-3 phosphorylates other proteins, they are inactivated and the signaling pathway is shut down. The PI3K/PTEN/AKT/GSK3/mTORC1 pathway plays key roles in regulation of cell growth, apoptosis, drug resistance, malignant transformation and metastasis and is often deregulated in cancer. When GSK-3 is phosphorylated by AKT it is inactivated and this often leads to growth promotion. When GSK-3 is not phosphorylated by AKT or other kinases at specific negative-regulatory residues, it can modify the activity of many proteins by phosphorylation, some of these proteins promote while others inhibit cell proliferation. This is part of the conundrum regarding GSK-3. The central theme of this review is the ability of GSK-3 to serve as either a tumor suppressor or a tumor promoter in cancer which is likely due to its diverse protein substrates. The effects of multiple miRs which bind mRNAs encoding GSK-3 and other signaling molecules and how they affect cell growth and sensitivity to various therapeutics will be discussed as they serve to regulate GSK-3 and other proteins important in controlling proliferation.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Quinase 3 da Glicogênio Sintase/genética , Humanos , MicroRNAs/genética , Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
7.
Cells ; 9(5)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365809

RESUMO

Glycogen synthase kinase 3 (GSK-3) is a serine/threonine (S/T) protein kinase. Although GSK-3 originally was identified to have functions in regulation of glycogen synthase, it was subsequently determined to have roles in multiple normal biochemical processes as well as various disease conditions. GSK-3 is sometimes referred to as a moonlighting protein due to the multiple substrates and processes which it controls. Frequently, when GSK-3 phosphorylates proteins, they are targeted for degradation. GSK-3 is often considered a component of the PI3K/PTEN/AKT/GSK-3/mTORC1 pathway as GSK-3 is frequently phosphorylated by AKT which regulates its inactivation. AKT is often active in human cancer and hence, GSK-3 is often inactivated. Moreover, GSK-3 also interacts with WNT/ß-catenin signaling and ß-catenin and other proteins in this pathway are targets of GSK-3. GSK-3 can modify NF-κB activity which is often expressed at high levels in cancer cells. Multiple pharmaceutical companies developed small molecule inhibitors to suppress GSK-3 activity. In addition, various natural products will modify GSK-3 activity. This review will focus on the effects of small molecule inhibitors and natural products on GSK-3 activity and provide examples where these compounds were effective in suppressing cancer growth.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Neoplasias/metabolismo , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Via de Sinalização Wnt/fisiologia
8.
Sci Rep ; 10(1): 5734, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235892

RESUMO

The Lemon Frost is a new colour morph of the leopard gecko, which emerged in ca. 2015 as a result of selective breeding and spontaneous mutation. According to multiple breeders observation of Lemon Frost inbreeding with wild-type leopard geckos, Lemon Frost seems to be a codominant trait. Additionally breeders observed another, presumably associated trait - tumour-like skin lesions. Three private-owned Lemon Frost morph leopard geckos with tumour-like skin lesions were admitted to our clinic for examination, which included histopathology, X-ray and ultrasonography. The histopathological investigation of the biopsies indicated malignant iridophoroma; however, no changes were observed in diagnostic imaging. This research is the first report of clinical and histopathological findings of iridophoroma in leopard geckos.


Assuntos
Cor , Lagartos/fisiologia , Pigmentação/fisiologia , Pele , Animais
9.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118696, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32165184

RESUMO

MicroRNAs (miRs) are small RNAs modulating gene expression and creating intricate regulatory networks that are dysregulated in many pathological states, including neurodegenerative disorders. In silico analyses denote a multifunctional kinase glycogen synthase kinase-3 (GSK3) as a putative target of numerous miRs identified in neural tissue. GSK3 is engaged in almost all aspects of neuronal development and functioning. Moreover, there is an autoregulatory feedback between GSK3 and miRNAs as the kinase can influence biogenesis of miRs. Members of the miR-GSK3 axes might thus represent convenient therapeutic targets in neuropathologies that display its abnormal regulation. This review summarizes the present knowledge about direct interactions of GSK3 and miRs in brain, and their putative roles in pathogenesis of neurodegenerative and neuropsychiatric disorders. This article is part of a Special Issue entitled: GSK-3 and related kinases in cancer, neurological and other disorders edited by James McCubrey, Agnieszka Gizak and Dariusz Rakus.


Assuntos
Encéfalo/metabolismo , Quinase 3 da Glicogênio Sintase/genética , MicroRNAs/genética , Doenças Neurodegenerativas/genética , Encéfalo/crescimento & desenvolvimento , Humanos , Doenças Neurodegenerativas/patologia
10.
Cells ; 9(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947613

RESUMO

Fibroblasts are important contributors to cancer development. They create a tumor microenvironment and modulate our metabolism and treatment resistance. In the present paper, we demonstrate that healthy fibroblasts induce metabolic coupling with non-small cell lung cancer cells by down-regulating the expression of glycolytic enzymes in cancer cells and increasing the fibroblasts' ability to release lactate and thus support cancer cells with energy-rich glucose-derived metabolites, such as lactate and pyruvate-a process known as the reverse Warburg effect. We demonstrate that these changes result from a fibroblasts-stimulated increase in the expression of fructose bisphosphatase (Fbp) in cancer cells and the consequent modulation of Hif1α function. We show that, in contrast to current beliefs, in lung cancer cells, the predominant and strong interaction with the Hif1α form of Fbp is not the liver (Fbp1) but in the muscle (Fbp2) isoform. Since Fbp2 oligomerization state and thus, its role is regulated by AMP and NAD+-crucial indicators of cellular metabolic conditions-we hypothesize that the Hif1α-dependent regulation of the metabolism in cancer is modulated through Fbp2, a sensor of the energy and redox state of a cell.


Assuntos
Adenocarcinoma Bronquioloalveolar/metabolismo , Fibroblastos/metabolismo , Frutose-Bifosfatase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/metabolismo , Células A549 , Adenocarcinoma Bronquioloalveolar/patologia , Animais , Células Cultivadas , Técnicas de Cocultura , Frutose-Bifosfatase/genética , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA