Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Circ Arrhythm Electrophysiol ; : e013054, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212055

RESUMO

BACKGROUND: Increased mitochondrial Ca2+ uptake has been implicated in the QT prolongation and lethal arrhythmias associated with nonischemic cardiomyopathy. We attempted to define the role of mitochondria in ischemic arrhythmic risk and to identify upstream regulators. METHODS: Myocardial infarction (MI) was induced in wild-type FVB/NJ mice by ligation of the left anterior descending coronary artery. Western blot, immunoprecipitation, ECG telemetry, and patch-clamp techniques were used. RESULTS: After MI, c-Src (proto-oncogene tyrosine-protein kinase Src) and its active form (p-Src Y416) were increased. The activation of c-Src was associated with increased diastolic Ca2+ sparks, action potential duration prolongation, and arrhythmia in MI mice. c-Src upregulation and arrhythmia could be reversed by treatment of mice with the Src inhibitor PP1 but not with the inactive analogue PP3. Tyrosine phosphorylated mitochondrial Ca2+ uniporter (MCU) was upregulated in the heart tissues of MI mice and patients with ischemic cardiomyopathy. In a heterologous expression system, c-Src could bind MCU and phosphorylate MCU tyrosines. Overexpression of wild-type c-Src significantly increased the mitochondrial Ca2+ transient while overexpression of dominant-negative c-Src significantly decreased the mitochondrial Ca2+ transient. c-Src inhibition by PP1, MCU inhibition by Ru360, or MCU knockdown could reduce the action potential duration, Ca2+ sparks, and arrhythmia after MI. The human heart tissue showed that patients with ischemic cardiomyopathy had significantly increased c-Src active form associated with increased MCU tyrosine phosphorylation and ventricular arrhythmia. CONCLUSIONS: MI leads to increased c-Src active form that results in MCU tyrosine phosphorylation, increased mitochondrial Ca2+ uptake, QT prolongation, and arrhythmia, suggesting c-Src or MCU may represent novel antiarrhythmic targets.

2.
JCI Insight ; 9(15)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889387

RESUMO

Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation (AF). The mechanisms underlying DM-associated AF are unclear. AF and DM are both related to inflammation. We investigated whether DM-associated inflammation contributed to AF risk. Mice were fed with high-fat diet to induce type II DM and were subjected to IL-1ß antibodies, macrophage depletion by clodronate liposomes, a mitochondrial antioxidant (mitoTEMPO), or a cardiac ryanodine receptor 2 (RyR2) stabilizer (S107). All tests were performed at 36-38 weeks of age. DM mice presented with increased AF inducibility, enhanced mitochondrial reactive oxygen species (mitoROS) generation, and activated innate immunity in the atria, as evidenced by enhanced monocyte chemoattractant protein-1 (MCP-1) expression, macrophage infiltration, and IL-1ß levels. Signs of aberrant RyR2 Ca2+ leak were observed in the atria of DM mice. IL-1ß neutralization, macrophage depletion, and exposure to mitoTEMPO and S107 significantly ameliorated the AF vulnerability in DM mice. Atrial overexpression of MCP-1 increased AF occurrence in normal mice through the same mechanistic signaling cascade as observed in DM mice. In conclusion, macrophage-mediated IL-1ß contributed to DM-associated AF risk through mitoROS modulation of RyR2 Ca2+ leak.


Assuntos
Fibrilação Atrial , Diabetes Mellitus Experimental , Interleucina-1beta , Macrófagos , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/etiologia , Fibrilação Atrial/imunologia , Camundongos , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/imunologia , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/imunologia , Quimiocina CCL2/metabolismo , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo
3.
Nutrients ; 15(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764704

RESUMO

As the second most abundant intracellular divalent cation, magnesium (Mg2+) is essential for cell functions, such as ATP production, protein/DNA synthesis, protein activity, and mitochondrial function. Mg2+ plays a critical role in heart rhythm, muscle contraction, and blood pressure. A significant decline in Mg2+ intake has been reported in developed countries because of the increased consumption of processed food and filtered/deionized water, which can lead to hypomagnesemia (HypoMg). HypoMg is commonly observed in cardiovascular diseases, such as heart failure, hypertension, arrhythmias, and diabetic cardiomyopathy, and HypoMg is a predictor for cardiovascular and all-cause mortality. On the other hand, Mg2+ supplementation has shown significant therapeutic effects in cardiovascular diseases. Some of the effects of HypoMg have been ascribed to changes in Mg2+ participation in enzyme activity, ATP stabilization, enzyme kinetics, and alterations in Ca2+, Na+, and other cations. In this manuscript, we discuss new insights into the pathogenic mechanisms of HypoMg that surpass previously described effects. HypoMg causes mitochondrial dysfunction, oxidative stress, and inflammation. Many of these effects can be attributed to the HypoMg-induced upregulation of a Mg2+ transporter transient receptor potential melastatin 7 channel (TRMP7) that is also a kinase. An increase in kinase signaling mediated by HypoMg-induced TRPM7 transcriptional upregulation, independently of any change in Mg2+ transport function, likely seems responsible for many of the effects of HypoMg. Therefore, Mg2+ supplementation and TRPM7 kinase inhibition may work to treat the sequelae of HypoMg by preventing increased TRPM7 kinase activity rather than just altering ion homeostasis. Since many diseases are characterized by oxidative stress or inflammation, Mg2+ supplementation and TRPM7 kinase inhibition may have wider implications for other diseases by acting to reduce oxidative stress and inflammation.


Assuntos
Doenças Cardiovasculares , Canais de Cátion TRPM , Humanos , Magnésio , Inflamação , Homeostase , Trifosfato de Adenosina , Proteínas Serina-Treonina Quinases
4.
JACC Basic Transl Sci ; 8(2): 174-185, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36908663

RESUMO

Diabetes mellitus (DM) is a main risk factor for diastolic dysfunction (DD) and heart failure with preserved ejection fraction. High-fat diet (HFD) mice presented with diabetes mellitus, DD, higher cardiac interleukin (IL)-1ß levels, and proinflammatory cardiac macrophage accumulation. DD was significantly ameliorated by suppressing IL-1ß signaling or depleting macrophages. Mice with macrophages unable to adopt a proinflammatory phenotype were low in cardiac IL-1ß levels and were resistant to HFD-induced DD. IL-1ß enhanced mitochondrial reactive oxygen species (mitoROS) in cardiomyocytes, and scavenging mitoROS improved HFD-induced DD. In conclusion, macrophage-mediated inflammation contributed to HFD-associated DD through IL-1ß and mitoROS production.

5.
Stem Cell Reports ; 17(9): 2005-2022, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35931076

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide great opportunities for mechanistic dissection of human cardiac pathophysiology; however, hiPSC-CMs remain immature relative to the adult heart. To identify novel signaling pathways driving the maturation process during heart development, we analyzed published transcriptional and epigenetic datasets from hiPSC-CMs and prenatal and postnatal human hearts. These analyses revealed that several components of the MAPK and PI3K-AKT pathways are downregulated in the postnatal heart. Here, we show that dual inhibition of these pathways for only 5 days significantly enhances the maturation of day 30 hiPSC-CMs in many domains: hypertrophy, multinucleation, metabolism, T-tubule density, calcium handling, and electrophysiology, many equivalent to day 60 hiPSC-CMs. These data indicate that the MAPK/PI3K/AKT pathways are involved in cardiomyocyte maturation and provide proof of concept for the manipulation of key signaling pathways for optimal hiPSC-CM maturation, a critical aspect of faithful in vitro modeling of cardiac pathologies and subsequent drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Recém-Nascido , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
JACC Clin Electrophysiol ; 7(9): 1079-1083, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34454876

RESUMO

Cardiac resynchronization therapy (CRT) can improve heart function and decrease arrhythmic events. We tested whether CRT altered circulating markers of calcium handling and sudden death risk. Circulating cardiac sodium channel messenger RNA (mRNA) splicing variants indicate arrhythmic risk, and a reduction in sarco/endoplasmic reticulum calcium adenosine triphosphatase 2a (SERCA2a) is thought to diminish contractility in heart failure. CRT was associated with a decreased proportion of circulating, nonfunctional sodium channels and improved SERCA2a mRNA expression. Patients without CRT did not have improvement in the biomarkers. These changes might explain the lower arrhythmic risk and improved contractility associated with CRT.


Assuntos
Terapia de Ressincronização Cardíaca , Biomarcadores , Cálcio , Morte Súbita , Humanos , Retículo Sarcoplasmático
7.
J Am Heart Assoc ; 10(12): e020205, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34096318

RESUMO

Background Dietary Mg intake is associated with a decreased risk of developing heart failure, whereas low circulating Mg level is associated with increased cardiovascular mortality. We investigated whether Mg deficiency alone could cause cardiomyopathy. Methods and Results C57BL/6J mice were fed with a low Mg (low-Mg, 15-30 mg/kg Mg) or a normal Mg (nl-Mg, 600 mg/kg Mg) diet for 6 weeks. To test reversibility, half of the low-Mg mice were fed then with nl-Mg diet for another 6 weeks. Low-Mg diet significantly decreased mouse serum Mg (0.38±0.03 versus 1.14±0.03 mmol/L for nl-Mg; P<0.0001) with a reciprocal increase in serum Ca, K, and Na. Low-Mg mice exhibited impaired cardiac relaxation (ratio between mitral peak early filling velocity E and longitudinal tissue velocity of the mitral anterior annulus e, 21.1±1.1 versus 15.4±0.4 for nl-Mg; P=0.011). Cellular ATP was decreased significantly in low-Mg hearts. The changes were accompanied by mitochondrial dysfunction with mitochondrial reactive oxygen species overproduction and membrane depolarization. cMyBPC (cardiac myosin-binding protein C) was S-glutathionylated in low-Mg mouse hearts. All these changes were normalized with Mg repletion. In vivo (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride treatment during low-Mg diet improved cardiac relaxation, increased ATP levels, and reduced S-glutathionylated cMyBPC. Conclusions Mg deficiency caused a reversible diastolic cardiomyopathy associated with mitochondrial dysfunction and oxidative modification of cMyBPC. In deficiency states, Mg supplementation may represent a novel treatment for diastolic heart failure.


Assuntos
Cardiomiopatias/etiologia , Deficiência de Magnésio/complicações , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Função Ventricular Esquerda , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Sinalização do Cálcio , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Proteínas de Transporte/metabolismo , Diástole , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Piperidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
8.
J Biol Chem ; 295(52): 18148-18159, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33093176

RESUMO

The QT interval is a recording of cardiac electrical activity. Previous genome-wide association studies identified genetic variants that modify the QT interval upstream of LITAF (lipopolysaccharide-induced tumor necrosis factor-α factor), a protein encoding a regulator of endosomal trafficking. However, it was not clear how LITAF might impact cardiac excitation. We investigated the effect of LITAF on the voltage-gated sodium channel Nav1.5, which is critical for cardiac depolarization. We show that overexpressed LITAF resulted in a significant increase in the density of Nav1.5-generated voltage-gated sodium current INa and Nav1.5 surface protein levels in rabbit cardiomyocytes and in HEK cells stably expressing Nav1.5. Proximity ligation assays showed co-localization of endogenous LITAF and Nav1.5 in cardiomyocytes, whereas co-immunoprecipitations confirmed they are in the same complex when overexpressed in HEK cells. In vitro data suggest that LITAF interacts with the ubiquitin ligase NEDD4-2, a regulator of Nav1.5. LITAF overexpression down-regulated NEDD4-2 in cardiomyocytes and HEK cells. In HEK cells, LITAF increased ubiquitination and proteasomal degradation of co-expressed NEDD4-2 and significantly blunted the negative effect of NEDD4-2 on INa We conclude that LITAF controls cardiac excitability by promoting degradation of NEDD4-2, which is essential for removal of surface Nav1.5. LITAF-knockout zebrafish showed increased variation in and a nonsignificant 15% prolongation of action potential duration. Computer simulations using a rabbit-cardiomyocyte model demonstrated that changes in Ca2+ and Na+ homeostasis are responsible for the surprisingly modest action potential duration shortening. These computational data thus corroborate findings from several genome-wide association studies that associated LITAF with QT interval variation.


Assuntos
Endossomos/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Potenciais de Ação , Animais , Estudo de Associação Genômica Ampla , Humanos , Miócitos Cardíacos/citologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Proteínas Nucleares/genética , Ligação Proteica , Transporte Proteico , Coelhos , Fatores de Transcrição/genética , Ubiquitinação , Peixe-Zebra
9.
Int J Cardiol ; 312: 1-9, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32199682

RESUMO

BACKGROUND: Diabetic (DM) inactivation of small conductance calcium-activated potassium (SK) channels contributes to coronary endothelial dysfunction. However, the mechanisms responsible for this down-regulation of endothelial SK channels are poorly understood. Thus, we hypothesized that the altered metabolic signaling in diabetes regulates endothelial SK channels and human coronary microvascular function. METHODS: Human atrial tissue, coronary arterioles and coronary artery endothelial cells (HCAECs) obtained from DM and non-diabetic (ND) patients (n = 12/group) undergoing cardiac surgery were used to analyze metabolic alterations, endothelial SK channel function, coronary microvascular reactivity and SK gene/protein expression/localization. RESULTS: The relaxation response of DM coronary arterioles to the selective SK channel activator SKA-31 and calcium ionophore A23187 was significantly decreased compared to that of ND arterioles (p < 0.05). Diabetes increases the level of NADH and the NADH/NAD+ ratio in human myocardium and HCAECs (p < 0.05). Increase in intracellular NADH (100 µM) in the HCAECs caused a significant decrease in endothelial SK channel currents (p < 0.05), whereas, intracellular application of NAD+ (500 µM) increased the endothelial SK channel currents (p < 0.05). Mitochondrial reactive oxygen species (mROS) of HCAECs and NADPH oxidase (NOX) and PKC protein expression in the human myocardium and coronary microvasculature were increased respectively (p < 0.05). CONCLUSIONS: Diabetes is associated with metabolic changes in the human myocardium, coronary microvasculature and HCAECs. Endothelial SK channel function is regulated by the metabolite pyridine nucleotides, NADH and NAD+, suggesting that metabolic regulation of endothelial SK channels may contribute to coronary endothelial dysfunction in the DM patients with diabetes.


Assuntos
Diabetes Mellitus , Células Endoteliais , Arteríolas , Vasos Coronários/diagnóstico por imagem , Coração , Humanos
10.
Oncol Lett ; 16(2): 1689-1695, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30008854

RESUMO

Resting membrane potential (RMP) and intracellular Ca2+ concentration [(Ca2+)i] are involved in tumorigenesis and metastasis. The present study investigated whether functional cardiac Na+ channels are expressed in human melanoma cells (WM 266-4) and its nonmalignant human melanocytes (HMC), as well as whether they participate in RMP maintenance and Ca2+ homeostasis. Confocal microscopy and western blot analysis were used to detect Na+ channels. The patch-clamp technique was employed to record Na+ currents and action potentials. Cytoplasmic Ca2+ was measured by loading Fluo-4. Cardiac (Nav1.5) Na+ channels were expressed in HMCs and WM 266-4 cells. Tetrodotoxin (TTX) dose-dependently blocked Na+ currents in WM 266-4 while HMCs had no Na+ currents. Ultraviolet light induced similar action potentials in HMCs and WM 266-4 cells, which were abolished by transient receptor potential A1 channel-specific blocker, HC-030031. Compared with HMCs, RMP was substantially depolarized in WM 266-4. TTX hyperpolarized RMP in WM 266-4 cells at a concentration of 30 µM, which facilitated Ca2+ influx. Compared with HMCs, (Ca2+)i was significantly higher in WM 266-4 cells and was elevated by 30 µM TTX. Collectively, Cardiac Na+ channels depolarize RMP and inhibit Ca2+ uptake in melanoma cells possibly contributing to tumorigenesis and metastasis. Na+ channel agonists may be developed to treat melanoma such as WM 266-4.

11.
J Am Heart Assoc ; 7(9)2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29678826

RESUMO

BACKGROUND: Although transcription is the initial process of gene expression, posttranscriptional gene expression regulation has also played a critical role for fine-tuning gene expression in a fast, precise, and cost-effective manner. Although the regulation of sodium channel α-subunit (SCN5A) mRNA expression has been studied at both transcriptional and pre-mRNA splicing levels, the molecular mechanisms governing SCN5A mRNA expression are far from clear. METHODS AND RESULTS: Herein, we show that, as evidenced by ribonucleoprotein immunoprecipitation assay, RNA binding protein Hu antigen R/ELAV like RNA binding protein 1 (HuR/ELAVL1) and myocyte enhancer factor-2C (MEF2C) transcription factor mRNA are associated. HuR positively regulated transcription factor MEF2C mRNA expression by protecting its mRNA from degradation. As demonstrated by both chromatin immunoprecipitation-quantitative polymerase chain reaction assay and an electrophoretic mobility shift assay, MEF2C enhanced SCN5A transcription by binding to a putative MEF2C binding site within SCN5A promoter region. Overexpression of HuR increased the expression of SCN5A mRNA, and this effect was attenuated by the presence of MEF2C small interfering RNA in cardiomyocytes. CONCLUSIONS: In conclusion, our results suggested that HuR participates in a combined network at the DNA and RNA levels that regulates SCN5A mRNA expression. HuR upregulates MEF2C mRNA expression by protecting MEF2C mRNA from degradation, and consequently, the elevated MEF2C enhances SCN5A mRNA transcription.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Sítios de Ligação , Linhagem Celular , Proteína Semelhante a ELAV 1/genética , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Ativação Transcricional , Regulação para Cima
12.
Heart Rhythm ; 15(7): 1072-1080, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29454929

RESUMO

BACKGROUND: Downregulated sodium currents in heart failure (HF) have been linked to increased arrhythmic risk. Reduced expression of the messenger RNA (mRNA)-stabilizing protein HuR (also known as ELAVL1) may be responsible for the downregulation of sodium channel gene SCN5A mRNA. OBJECTIVE: The purpose of this article was to investigate whether HuR regulates SCN5A mRNA expression and whether manipulation of HuR benefits arrhythmia control in HF. METHODS: Quantitative real-time reverse-transcriptase polymerase chain reaction was used to investigate the expression of SCN5A. Optical mapping of the intact heart was adopted to study the effects of HuR on the conduction velocity and action potential upstroke in mice with myocardial infarct and HF after injection of AAV9 viral particles carrying HuR. RESULTS: HuR was associated with SCN5A mRNA in cardiomyocytes, and expression of HuR was downregulated in failing hearts. The association of HuR and SCN5A mRNA protected SCN5A mRNA from decay. Injection of AAV9 viral particles carrying HuR increased SCN5A expression in mouse heart tissues after MI. Optical mapping of the intact heart demonstrated that overexpression of HuR improved action potential upstroke and conduction velocity in the infarct border zone, which reduced the risk of reentrant arrhythmia after MI. CONCLUSION: Our data indicate that HuR is an important RNA-binding protein in maintaining SCN5A mRNA abundance in cardiomyocytes. Reduced expression of HuR may be at least partially responsible for the downregulation of SCN5A mRNA expression in ischemic HF. Overexpression of HuR may rescue decreased SCN5A expression and reduce arrhythmic risk in HF. Increasing mRNA stability to increase ion channel currents may correct a fundamental defect in HF and represent a new paradigm in antiarrhythmic therapy.


Assuntos
Arritmias Cardíacas/genética , Proteína Semelhante a ELAV 1/genética , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Miocárdio/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , RNA Mensageiro/genética , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/patologia , Células Cultivadas , Proteína Semelhante a ELAV 1/biossíntese , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L748-L759, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28258105

RESUMO

Right ventricular (RV) dysfunction is associated with numerous smoking-related illnesses, including chronic obstructive pulmonary disease (COPD), in which it is present even in the absence of pulmonary hypertension. It is unknown whether exposure to cigarette smoke (CS) has direct effects on RV function and cardiac fibroblast (CF) proliferation or collagen synthesis. In this study, we evaluated cardiac function and fibrosis in mice exposed to CS and determined mechanisms of smoke-induced changes in CF signaling and fibrosis. AKR mice were exposed to CS for 6 wk followed by echocardiography and evaluation of cardiac hypertrophy, collagen content, and pulmonary muscularization. Proliferation and collagen content were evaluated in primary isolated rat CFs exposed to CS extract (CSE) or nicotine. Markers of cell proliferation, fibrosis, and proliferative signaling were determined by immunoblot or Sircol collagen assay. Mice exposed to CS had significantly decreased RV function, as determined by tricuspid annular plane systolic excursion. There were no changes in left ventricular parameters. RV collagen content was significantly elevated, but there was no change in RV hypertrophy or pulmonary vascular muscularization. CSE directly increased CF proliferation and collagen content in CF. Nicotine alone reproduced these effects. CSE and nicotine-induced fibroblast proliferation and collagen content were mediated through α7 nicotinic acetylcholine receptors and were dependent on PKC-α, PKC-δ, and reduced p38-MAPK phosphorylation. CS and nicotine have direct effects on CFs to induce proliferation and fibrosis, which may negatively affect right heart function.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/patologia , Ventrículos do Coração/patologia , Miocárdio/patologia , Fumar/efeitos adversos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Hipertrofia Ventricular Direita/complicações , Hipertrofia Ventricular Direita/diagnóstico por imagem , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos AKR , Nicotina/farmacologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Ratos Sprague-Dawley , Remodelação Vascular/efeitos dos fármacos , Disfunção Ventricular Direita/complicações , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/patologia , Disfunção Ventricular Direita/fisiopatologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Cardiovasc Res ; 113(3): 343-353, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096168

RESUMO

Aims: Plasmamembrane small conductance Ca2+-activated K+ (SK) channels were implicated in ventricular arrhythmias in infarcted and failing hearts. Recently, SK channels were detected in the inner mitochondria membrane (IMM) (mSK), and their activation protected from acute ischaemia-reperfusion injury by reducing intracellular levels of reactive oxygen species (ROS). We hypothesized that mSK play an important role in regulating mitochondrial function in chronic cardiac diseases. We investigated the role of mSK channels in Ca2+-dependent ventricular arrhythmia using rat model of cardiac hypertrophy induced by banding of the ascending aorta thoracic aortic banding (TAB). Methods and results: Dual Ca2+ and membrane potential optical mapping of whole hearts derived from TAB rats revealed that membrane-permeable SK enhancer NS309 (2 µM) improved aberrant Ca2+ homeostasis and abolished VT/VF induced by ß-adrenergic stimulation. Using whole cell patch-clamp and confocal Ca2+ imaging of cardiomyocytes derived from TAB hearts (TCMs) we found that membrane-permeable SK enhancers NS309 and CyPPA (10 µM) attenuated frequency of spontaneous Ca2+ waves and delayed afterdepolarizations. Furthermore, mSK inhibition enhanced (UCL-1684, 1 µM); while activation reduced mitochondrial ROS production in TCMs measured with MitoSOX. Protein oxidation assays demonstrated that increased oxidation of ryanodine receptors (RyRs) in TCMs was reversed by SK enhancers. Experiments in permeabilized TCMs showed that SK enhancers restored SR Ca2+ content, suggestive of substantial improvement in RyR function. Conclusion: These data suggest that enhancement of mSK channels in hypertrophic rat hearts protects from Ca2+-dependent arrhythmia and suggest that the protection is mediated via decreased mitochondrial ROS and subsequent decreased oxidation of reactive cysteines in RyR, which ultimately leads to stabilization of RyR-mediated Ca2+ release.


Assuntos
Arritmias Cardíacas/prevenção & controle , Sinalização do Cálcio/efeitos dos fármacos , Cardiomegalia/tratamento farmacológico , Indóis/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Oximas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/agonistas , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Cardiomegalia/complicações , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Cinética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Oxirredução , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
15.
Biomed Res Int ; 2015: 825027, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26504834

RESUMO

Animal models have suggested a role of renin-angiotensin system (RAS) activation and subsequent cardiac oxidation in heart failure with preserved ejection fraction (HFpEF). Nevertheless, RAS blockade has failed to show efficacy in treatment of HFpEF. We evaluated the role of RAS activation and subsequent systemic oxidation in HFpEF. Oxidative stress markers were compared in 50 subjects with and without early HFpEF. Derivatives of reactive oxidative metabolites (DROMs), F2-isoprostanes (IsoPs), and ratios of oxidized to reduced glutathione (E h GSH) and cysteine (E h CyS) were measured. Angiotensin converting enzyme (ACE) levels and activity were measured. On univariate analysis, HFpEF was associated with male sex (p = 0.04), higher body mass index (BMI) (p = 0.003), less oxidized E h CyS (p = 0.001), lower DROMs (p = 0.02), and lower IsoP (p = 0.03). Higher BMI (OR: 1.3; 95% CI: 1.1-1.6) and less oxidized E h CyS (OR: 1.2; 95% CI: 1.1-1.4) maintained associations with HFpEF on multivariate analysis. Though ACE levels were higher in early HFpEF (OR: 1.09; 95% CI: 1.01-1.05), ACE activity was similar to that in controls. HFpEF is not associated with significant systemic RAS activation or oxidative stress. This may explain the failure of RAS inhibitors to alter outcomes in HFpEF.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Estresse Oxidativo/fisiologia , Sistema Renina-Angiotensina/fisiologia , Volume Sistólico/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos Transversais , Feminino , Insuficiência Cardíaca/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade
16.
IJC Metab Endocr ; 6: 24-26, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25709897

RESUMO

BACKGROUND: Inflammation and oxidative stress have been linked to the origin and persistence of atrial fibrillation (AF). CHADS-2 scoring system is a risk stratification schema well validated in prognostication of stroke in AF. We evaluated the association of markers of oxidative stress and inflammation with CHADS-2 scores in chronic AF patients. METHODS: CHADS-2 scores were calculated for 64 subjects with chronic AF. Serum markers of inflammation [C-reactive protein (hs-CRP), interleukin-6 (IL-6), interleukin 1ß (IL-1ß), tumor necrosis factor-α (TNF-α)] and of oxidative stress [Derivatives of reactive oxygen metabolites (DROMs) and isoprostanes (IsoPs)] were measured. RESULTS: Twenty subjects were categorized as 0 (no risk), 24 as 1 (intermediate risk) and 20 as 2 (severe risk) based on their CHADS-2 scores. High sensitivity-CRP (CHADS-2 0=40.0%, 1=70.0%, 2=90.0%; p=0.003) and DROMs (CHADS-2 0=45%, 1=78%, 2=80%; p=0.04) were positively associated with the CHADS-2 risk score. Subjects with intermediate to severe CHADS-2 risk retained significant associations with abnormal hs-CRP (OR: 5.3, 95%CI: 1.1-25.0) and DROMs (adjusted OR: 6.7, 95%CI: 1.2-38.8) after adjusting for gender and hypertension. In a multiple logistic interaction model, there was no significant interaction between hs-CRP and DROMs in their association with CHADS-2 risk categories (p=0.64). A biomarker risk-model, combining hs-CRP and DROMs, correlated well with the CHADS-2 risk categories (r= 0.49, p<0.001). CONCLUSIONS: A biomarker risk-model using a combination of hs-CRP and DROMs correlates well with CHADS-2 risk scores in chronic AF. Either or both of these markers may add predictive power to future stroke risk prediction models.

17.
Am J Cardiol ; 115(7): 924-31, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25682436

RESUMO

Sudden cardiac death (SCD) is a leading cause of mortality in patients with cardiomyopathy. Although angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs) decrease cardiac mortality in these cohorts, their role in preventing SCD has not been well established. We sought to determine whether the use of ACEi or ARB in patients with cardiomyopathy is associated with a lower incidence of appropriate implantable cardiac defibrillator (ICD) shocks in the Genetic Risk Assessment of Defibrillator Events study that included subjects with an ejection fraction of ≤30% and ICDs. Treatment with ACEi/ARB versus no-ACEi/ARB was physician dependent. There were 1,509 patients (mean age [SD] 63 [12] years, 80% men, mean [SD] EF 21% [6%]) with 1,213 (80%) on ACEi/ARB and 296 (20%) not on ACEi/ARB. We identified 574 propensity-matched patients (287 in each group). After a mean (SD) of 2.5 (1.9) years, there were 334 (22%) appropriate shocks in the entire cohort. The use of ACEi/ARB was associated with lower incidence of shocks at 1, 3, and 5 years in the matched cohort (7.7%, 16.7%, and 18.5% vs 13.2%, 27.5%, and 32.0%; RR = 0.61 [0.43 to 0.86]; p = 0.005). Among patients with glomerular filtration rate (GFR) >60 and 30 to 60 ml/min/1.73 m(2), those on no-ACEi/ARB were at 45% and 77% increased risk of ICD shock compared with those on ACEi/ARB, respectively. ACEi/ARB were associated with significant lower incidence of appropriate ICD shock in patients with cardiomyopathy and GFR ≥30 ml/min/1.73 m(2) and with neutral effect in those with GFR <30 ml/min/1.73 m(2).


Assuntos
Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Insuficiência Cardíaca Sistólica/terapia , Medição de Risco/métodos , Idoso , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/prevenção & controle , Feminino , Seguimentos , Insuficiência Cardíaca Sistólica/mortalidade , Insuficiência Cardíaca Sistólica/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Índice de Gravidade de Doença , Taxa de Sobrevida/tendências , Fatores de Tempo , Estados Unidos/epidemiologia
18.
PLoS One ; 9(8): e104101, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25158065

RESUMO

Nitrate tolerance developed after persistent nitroglycerin (GTN) exposure limits its clinical utility. Previously, we have shown that the vasodilatory action of GTN is dependent on endothelial nitric oxide synthase (eNOS/NOS3) activity. Caveolin-1 (Cav-1) is known to interact with NOS3 on the cytoplasmic side of cholesterol-enriched plasma membrane microdomains (caveolae) and to inhibit NOS3 activity. Loss of Cav-1 expression results in NOS3 hyperactivation and uncoupling, converting NOS3 into a source of superoxide radicals, peroxynitrite, and oxidative stress. Therefore, we hypothesized that nitrate tolerance induced by persistent GTN treatment results from NOS3 dysfunction and vascular toxicity. Exposure to GTN for 48-72 h resulted in nitrosation and depletion (>50%) of Cav-1, NOS3 uncoupling as measured by an increase in peroxynitrite production (>100%), and endothelial toxicity in cultured cells. In the Cav-1 deficient mice, NOS3 dysfunction was accompanied by GTN tolerance (>50% dilation inhibition at low GTN concentrations). In conclusion, GTN tolerance results from Cav-1 modification and depletion by GTN that causes persistent NOS3 activation and uncoupling, preventing it from participating in GTN-medicated vasodilation.


Assuntos
Caveolina 1/genética , Tolerância a Medicamentos , Nitroglicerina/farmacologia , Vasodilatadores/farmacologia , Animais , Caveolina 1/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Proteólise/efeitos dos fármacos
19.
Free Radic Biol Med ; 71: 351-361, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24713422

RESUMO

Mitochondria are essential to providing ATP, thereby satisfying the energy demand of the incessant electrical activity and contractile action of cardiac muscle. Emerging evidence indicates that mitochondrial dysfunction can adversely affect cardiac electrical functioning by impairing the intracellular ion homeostasis and membrane excitability through reduced ATP production and excessive reactive oxygen species (ROS) generation, resulting in increased propensity to cardiac arrhythmias. In this review, the molecular mechanisms linking mitochondrial dysfunction to cardiac arrhythmias are discussed with an emphasis on the impact of increased mitochondrial ROS on the cardiac ion channels and transporters that are critical to maintaining normal electromechanical functioning of the cardiomyocytes. The potential of using mitochondria-targeted antioxidants as a novel antiarrhythmia therapy is highlighted.


Assuntos
Arritmias Cardíacas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Antioxidantes/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Cardiotônicos/uso terapêutico , Humanos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Oxirredução , Canais de Potássio/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Canais de Sódio/metabolismo
20.
J Mol Cell Cardiol ; 54: 25-34, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23123323

RESUMO

Cardiomyopathy is associated with cardiac Na(+) channel downregulation that may contribute to arrhythmias. Previously, we have shown that elevated intracellular NADH causes a decrease in cardiac Na(+) current (I(Na)) signaled by an increase in mitochondrial reactive oxygen species (ROS). In this study, we tested whether the NADH-mitochondria ROS pathway was involved in the reduction of I(Na) in a nonischemic cardiomyopathic model and correlated the findings with myopathic human hearts. Nonischemic cardiomyopathy was induced in C57BL/6 mice by hypertension after unilateral nephrectomy, deoxycorticosterone acetate (DOCA) pellet implantation, and salt water substitution. Sham operated mice were used as controls. After six weeks, heart tissue and ventricular myocytes isolated from mice were utilized for whole cell patch clamp recording, NADH/NAD(+) level measurements, and mitochondrial ROS monitoring with confocal microscopy. Human explanted hearts were studied using optical mapping. Compared to the sham mice, the arterial blood pressure was higher, the left ventricular volume was significantly enlarged (104.7±3.9 vs. 87.9±6.1 µL, P<0.05), and the ejection fraction was reduced (37.1±1.8% vs. 49.4±3.7%, P<0.05) in DOCA mice. Both the whole cell and cytosolic NADH level were increased (279±70% and 123±2% of sham, respectively, P<0.01), I(Na) was decreased (60±10% of sham, P<0.01), and mitochondrial ROS overproduction was observed (2.9±0.3-fold of sham, P<0.01) in heart tissue and myocytes of myopathic mice vs. sham. Treatment of myocytes with NAD(+) (500 µM), mitoTEMPO (10 µM), chelerythrine (50 µM), or forskolin (5 µM) restored I(Na) back to the level of sham. Injection of NAD(+) (100mg/kg) or mitoTEMPO (0.7 mg/kg) twice (at 24h and 1h before myocyte isolation) to animals also restored I(Na). All treatments simultaneously reduced mitochondrial ROS levels to that of controls. CD38 was found to transduce the extracellular NAD(+) signal. Correlating with the mouse model, failing human hearts showed a reduction in conduction velocity that improved with NAD(+). Nonischemic cardiomyopathy was associated with elevated NADH level, PKC activation, mitochondrial ROS overproduction, and a concomitant decrease in I(Na). Reducing mitochondrial ROS by application of NAD(+), mitoTEMPO, PKC inhibitors, or PKA activators, restored I(Na). NAD(+) improved conduction velocity in human myopathic hearts.


Assuntos
Cardiomiopatias/metabolismo , Mitocôndrias Cardíacas/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Benzofenantridinas/farmacologia , Colforsina/farmacologia , Regulação para Baixo , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Técnicas In Vitro , Glicoproteínas de Membrana/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , NAD/metabolismo , NAD/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Compostos Organofosforados/farmacologia , Estresse Oxidativo , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA