Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39064646

RESUMO

Strategies for successful aging, including the use of food supplements, are part of the approach to support skin youthfulness. To demonstrate the efficacy of fermented bilberry extract (FBE) against skin aging and uneven complexion, a clinical trial was carried out on 66 subjects with visible "crow's feet" wrinkles, mild-to-moderate skin slackness, and uneven skin tone. The wrinkle depth, skin smoothness (Ra) and roughness (Rz), skin firmness (R0) and elasticity (R2), skin coloration (ITA°), and skin antioxidant capacity were measured before and after 28 (D28), 56 (D56), and 84 (D84) days of product use (either FBE or a placebo). These parameters were also integrated with a clinical evaluation, carried out by a dermatologist, and a self-assessment questionnaire to align the measured efficacy with the visual or perceived efficacy. At D84, the wrinkle depth had decreased by 10.6%, Ra had improved by 7.9%, Rz had decreased by 7.3%, R0 had improved by 13.3%, R2 had improved by 12.4%, and skin antioxidant capacity had increased by 20.8%. ITA° increased by 20.8% and was accompanied by a decrease in the skin's redness component by 16.8% and an increase in the lightness component by 2.2%. The variation of all the above-mentioned parameters was statistically significant between the FBE and PL groups. Our findings demonstrate the efficacy of FBE in improving skin aging and complexion evenness.


Assuntos
Antioxidantes , Extratos Vegetais , Envelhecimento da Pele , Vaccinium myrtillus , Humanos , Envelhecimento da Pele/efeitos dos fármacos , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Feminino , Vaccinium myrtillus/química , Método Duplo-Cego , Pessoa de Meia-Idade , Adulto , Masculino , Pele/efeitos dos fármacos , Pigmentação da Pele/efeitos dos fármacos , Fermentação , Suplementos Nutricionais , Idoso , Antocianinas
2.
Front Immunol ; 13: 871080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052065

RESUMO

The consumption of plant-based bioactive compounds modulates the gut microbiota and interacts with the innate and adaptive immune responses associated with metabolic disorders. The present study aimed to evaluate the effect of cranberry polyphenols (CP), rich in flavonoids, and agavins (AG), a highly branched agave-derived neo-fructans, on cardiometabolic response, gut microbiota composition, metabolic endotoxemia, and mucosal immunomodulation of C57BL6 male mice fed an obesogenic high-fat and high-sucrose (HFHS) diet for 9 weeks. Interestingly, CP+AG-fed mice had improved glucose homeostasis. Oral supplementation with CP selectively and robustly (five-fold) increases the relative abundance of Akkermansia muciniphila, a beneficial bacteria associated with metabolic health. AG, either alone or combined with CP (CP+AG), mainly stimulated the glycan-degrading bacteria Muribaculum intestinale, Faecalibaculum rodentium, Bacteroides uniformis, and Bacteroides acidifaciens. This increase of glycan-degrading bacteria was consistent with a significantly increased level of butyrate in obese mice receiving AG, as compared to untreated counterparts. CP+AG-supplemented HFHS-fed mice had significantly lower levels of plasma LBP than HFHS-fed controls, suggesting blunted metabolic endotoxemia and improved intestinal barrier function. Gut microbiota and derived metabolites interact with the immunological factors to improve intestinal epithelium barrier function. Oral administration of CP and AG to obese mice contributed to dampen the pro-inflammatory immune response through different signaling pathways. CP and AG, alone or combined, increased toll-like receptor (TLR)-2 (Tlr2) expression, while decreasing the expression of interleukin 1ß (ILß1) in obese mice. Moreover, AG selectively promoted the anti-inflammatory marker Foxp3, while CP increased the expression of NOD-like receptor family pyrin domain containing 6 (Nlrp6) inflammasome. The intestinal immune system was also shaped by dietary factor recognition. Indeed, the combination of CP+AG significantly increased the expression of aryl hydrocarbon receptors (Ahr). Altogether, both CP and AG can shape gut microbiota composition and regulate key mucosal markers involved in the repair of epithelial barrier integrity, thereby attenuating obesity-associated gut dysbiosis and metabolic inflammation and improving glucose homeostasis.


Assuntos
Agave , Endotoxemia , Microbiota , Vaccinium macrocarpon , Agave/metabolismo , Animais , Dieta Hiperlipídica , Glucose/metabolismo , Imunidade , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Vaccinium macrocarpon/metabolismo
3.
Gut Microbes ; 13(1): 2004070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812123

RESUMO

The Developmental Origins of Health and Disease (DOHaD) concept has been proposed to explain the influence of environmental conditions during critical developmental stages on the risk of diseases in adulthood. The aim of this study was to compare the impact of the prenatal vs. postnatal environment on the gut microbiota in dams during the preconception, gestation and lactation periods and their consequences on metabolic outcomes in offspring. Here we used the cross-fostering technique, e.g. the exchange of pups following birth to a foster dam, to decipher the metabolic effects of the intrauterine versus postnatal environmental exposures to a polyphenol-rich cranberry extract (CE). CE administration to high-fat high-sucrose (HFHS)-fed dams improved glucose homeostasis and reduced liver steatosis in association with a shift in the maternal gut microbiota composition. Unexpectedly, we observed that the postnatal environment contributed to metabolic outcomes in female offspring, as revealed by adverse effects on adiposity and glucose metabolism, while no effect was observed in male offspring. In addition to the strong sexual dimorphism, we found a significant influence of the nursing mother on the community structure of the gut microbiota based on α-diversity and ß-diversity indices in offspring. Gut microbiota transplantation (GMT) experiments partly reproduced the observed phenotype in female offspring. Our data support the concept that the postnatal environment represents a critical window to influence future sex-dependent metabolic outcomes in offspring that are causally but partly linked with gut microbiome alterations.


Assuntos
Microbioma Gastrointestinal/fisiologia , Glucose/metabolismo , Caracteres Sexuais , Adiposidade/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Intolerância à Glucose/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/microbiologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Gravidez , Vaccinium macrocarpon/química , Aumento de Peso/efeitos dos fármacos
4.
Food Funct ; 12(8): 3680-3691, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33900317

RESUMO

Some polyphenols have been reported to modulate the expression of several genes related to lipid metabolism and insulin signaling, ameliorating metabolic disorders. We investigated the potential for the polyphenols of two varieties of grumixama, the purple fruit rich in anthocyanins and the yellow fruit, both also rich in ellagitannins, to attenuate obesity-associated metabolic disorders. Mice were fed a high fat and high sucrose diet, supplemented daily with yellow and purple extracts (200 mg per kg of body weight) for eight weeks. Purple grumixama supplementation was found to decrease body weight gain, improve insulin sensitivity and glucose-induced hyperinsulinemia, and reduce hepatic triglyceride accumulation. A decrease in intrahepatic lipids in mice treated with the purple grumixama extract was associated with lipid metabolism modulation by the PPAR signaling pathway. LPL, ApoE, and LDLr were found to be down-regulated, while Acox1 and ApoB were found to be upregulated. Some of these genes were also modulated by the yellow extract. In addition, both extracts decreased oGTT and plasma LPS. The results were associated with the presence of phenolic acids and urolithins. In conclusion, most likely the anthocyanins from the purple grumixama phenolic extract is responsible for reducing obesity and insulin resistance.


Assuntos
Antocianinas/administração & dosagem , Eugenia , Extratos Vegetais/administração & dosagem , Animais , Antocianinas/farmacologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fitoterapia , Extratos Vegetais/farmacologia
5.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805947

RESUMO

The scope of evidence on the neuroprotective impact of natural products has been greatly extended in recent years. However, a key question that remains to be answered is whether natural products act directly on targets located in the central nervous system (CNS), or whether they act indirectly through other mechanisms in the periphery. While molecules utilized for brain diseases are typically bestowed with a capacity to cross the blood-brain barrier, it has been recently uncovered that peripheral metabolism impacts brain functions, including cognition. The gut-microbiota-brain axis is receiving increasing attention as another indirect pathway for orally administered compounds to act on the CNS. In this review, we will briefly explore these possibilities focusing on two classes of natural products: omega-3 polyunsaturated fatty acids (n-3 PUFAs) from marine sources and polyphenols from plants. The former will be used as an example of a natural product with relatively high brain bioavailability but with tightly regulated transport and metabolism, and the latter as an example of natural compounds with low brain bioavailability, yet with a growing amount of preclinical and clinical evidence of efficacy. In conclusion, it is proposed that bioavailability data should be sought early in the development of natural products to help identifying relevant mechanisms and potential impact on prevalent CNS disorders, such as Alzheimer's disease.


Assuntos
Produtos Biológicos/farmacologia , Barreira Hematoencefálica , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Disponibilidade Biológica , Produtos Biológicos/farmacocinética , Transporte Biológico , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Ácidos Graxos Ômega-3/farmacocinética , Ácidos Graxos Ômega-3/farmacologia , Microbioma Gastrointestinal , Humanos , Fármacos Neuroprotetores/farmacocinética , Polifenóis/farmacocinética , Polifenóis/farmacologia
6.
Front Microbiol ; 11: 2032, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983031

RESUMO

Berries are rich in polyphenols and plant cell wall polysaccharides (fibers), including cellulose, hemicellulose, arabinans and arabino-xyloglucans rich pectin. Most of polyphenols and fibers are known to be poorly absorbed in the small intestine and reach the colon where they interact with the gut microbiota, conferring health benefits to the host. This study assessed the contribution of polyphenol-rich whole cranberry and blueberry fruit powders (CP and BP), and that of their fibrous fractions (CF and BF) on modulating the gut microbiota, the microbial functional profile and influencing metabolic disorders induced by high-fat high-sucrose (HFHS) diet for 8 weeks. Lean mice-associated taxa, including Akkermansia muciniphila, Dubosiella newyorkensis, and Angelakisella, were selectively induced by diet supplementation with polyphenol-rich CP and BP. Fiber-rich CF also triggered polyphenols-degrading families Coriobacteriaceae and Eggerthellaceae. Diet supplementation with polyphenol-rich CP, but not with its fiber-rich CF, reduced fat mass depots, body weight and energy efficiency in HFHS-fed mice. However, CF reduced liver triglycerides in HFHS-fed mice. Importantly, polyphenol-rich CP-diet normalized microbial functions to a level comparable to that of Chow-fed controls. Using multivariate association modeling, taxa and predicted functions distinguishing an obese phenotype from healthy controls and berry-treated mice were identified. The enterotype-like clustering analysis underlined the link between a long-term diet intake and the functional stratification of the gut microbiota. The supplementation of a HFHS-diet with polyphenol-rich CP drove mice gut microbiota from Firmicutes/Ruminococcus enterotype into an enterotype linked to healthier host status, which is Prevotella/Akkermansiaceae. This study highlights the prebiotic role of polyphenols, and their contribution to the compositional and functional modulation of the gut microbiota, counteracting obesity.

7.
Am J Physiol Endocrinol Metab ; 318(6): E965-E980, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32228321

RESUMO

Blueberry consumption can prevent obesity-linked metabolic diseases, and it has been proposed that the polyphenol content of blueberries may contribute to these effects. Polyphenols have been shown to favorably impact metabolic health, but the role of specific polyphenol classes and whether the gut microbiota is linked to these effects remain unclear. We aimed to evaluate the impact of whole blueberry powder and blueberry polyphenols on the development of obesity and insulin resistance and to determine the potential role of gut microbes in these effects by using fecal microbiota transplantation (FMT). Sixty-eight C57BL/6 male mice were assigned to one of the following diets for 12 wk: balanced diet (Chow); high-fat, high-sucrose diet (HFHS); or HFHS supplemented with whole blueberry powder (BB), anthocyanidin (ANT)-rich extract, or proanthocyanidin (PAC)-rich extract. After 8 wk, mice were housed in metabolic cages, and an oral glucose tolerance test (OGTT) was performed. Sixty germ-free mice fed HFHS diet received FMT from one of the above groups biweekly for 8 wk, followed by an OGTT. PAC-treated mice were leaner than HFHS controls although they had the same energy intake and were more physically active. This observation was reproduced in germ-free mice receiving FMT from PAC-treated mice. PAC- and ANT-treated mice showed improved insulin responses during OGTT, and this finding was also reproduced in germ-free mice following FMT. These results show that blueberry PAC and ANT polyphenols can reduce diet-induced body weight and improve insulin sensitivity and that at least part of these beneficial effects are explained by modulation of the gut microbiota.


Assuntos
Antocianinas/farmacologia , Mirtilos Azuis (Planta) , Frutas , Microbioma Gastrointestinal/efeitos dos fármacos , Resistência à Insulina , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Sacarose Alimentar , Transplante de Microbiota Fecal , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia
8.
Sci Rep ; 10(1): 2217, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041991

RESUMO

Blueberries are a rich source of polyphenols, widely studied for the prevention or attenuation of metabolic diseases. However, the health contribution and mechanisms of action of polyphenols depend on their type and structure. Here, we evaluated the effects of a wild blueberry polyphenolic extract (WBE) (Vaccinium angustifolium Aiton) on cardiometabolic parameters, gut microbiota composition and gut epithelium histology of high-fat high-sucrose (HFHS) diet-induced obese mice and determined which constitutive polyphenolic fractions (BPF) was responsible for the observed effects. To do so, the whole extract was separated in three fractions, F1) Anthocyanins and phenolic acids, F2) oligomeric proanthocyanidins (PACs), phenolic acids and flavonols (PACs degree of polymerization DP < 4), and F3) PACs polymers (PACs DP > 4) and supplied at their respective concentration in the whole extract. After 8 weeks, WBE reduced OGTT AUC by 18.3% compared to the HFHS treated rodents and the F3 fraction  contributed the most to this effect. The anthocyanin rich F1 fraction did not reproduce this response. WBE and the BPF restored the colonic mucus layer. Particularly, the polymeric PACs-rich F3 fraction increased the mucin-secreting goblet cells number. WBE caused a significant 2-fold higher proportion of Adlercreutzia equolifaciens whereas oligomeric PACs-rich F2 fraction increased by 2.5-fold the proportion of Akkermansia muciniphila. This study reveals the key role of WBE PACs in modulating the gut microbiota and restoring colonic epithelial mucus layer, providing a suitable ecological niche for mucosa-associated symbiotic bacteria, which may be crucial in triggering health effects of blueberry polyphenols.


Assuntos
Mirtilos Azuis (Planta)/química , Microbioma Gastrointestinal/efeitos dos fármacos , Intolerância à Glucose/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Proantocianidinas/administração & dosagem , Administração Oral , Animais , Glicemia/análise , Colo/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Modelos Animais de Doenças , Glucose/metabolismo , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Humanos , Resistência à Insulina , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Extratos Vegetais/química
9.
J Gerontol A Biol Sci Med Sci ; 74(7): 996-1007, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-30032176

RESUMO

Polyphenols are promising nutritional bioactives exhibiting beneficial effect on age-related cognitive decline. This study evaluated the effect of a polyphenol-rich extract from grape and blueberry (PEGB) on memory of healthy elderly subjects (60-70 years-old). A bicentric, randomized, double-blind, placebo-controlled trial was conducted with 215 volunteers receiving 600 mg/day of PEGB (containing 258 mg flavonoids) or a placebo for 6 months. The primary outcome was the CANTAB Paired Associate Learning (PAL), a visuospatial learning and episodic memory test. Secondary outcomes included verbal episodic and recognition memory (VRM) and working memory (SSP). There was no significant effect of PEGB on the PAL on the whole cohort. Yet, PEGB supplementation improved VRM-free recall. Stratifying the cohort in quartiles based on PAL at baseline revealed a subgroup with advanced cognitive decline (decliners) who responded positively to the PEGB. In this group, PEGB consumption was also associated with a better VRM-delayed recognition. In addition to a lower polyphenol consumption, the urine metabolomic profile of decliners revealed that they excreted more metabolites. Urinary concentrations of specific flavan-3-ols metabolites were associated, at the end of the intervention, with the memory improvements. Our study demonstrates that PEGB improves age-related episodic memory decline in individuals with the highest cognitive impairments.


Assuntos
Envelhecimento , Mirtilos Azuis (Planta)/química , Memória Episódica , Polifenóis/administração & dosagem , Presbiacusia , Reconhecimento Psicológico/efeitos dos fármacos , Navegação Espacial/efeitos dos fármacos , Vitis/química , Idoso , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Suplementos Nutricionais , Feminino , Flavonoides/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Extratos Vegetais/administração & dosagem , Presbiacusia/diagnóstico , Presbiacusia/tratamento farmacológico , Presbiacusia/psicologia , Resultado do Tratamento
10.
Gut ; 68(3): 453-464, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30064988

RESUMO

OBJECTIVE: The consumption of fruits is strongly associated with better health and higher bacterial diversity in the gut microbiota (GM). Camu camu (Myrciaria dubia) is an Amazonian fruit with a unique phytochemical profile, strong antioxidant potential and purported anti-inflammatory potential. DESIGN: By using metabolic tests coupled with 16S rRNA gene-based taxonomic profiling and faecal microbial transplantation (FMT), we have assessed the effect of a crude extract of camu camu (CC) on obesity and associated immunometabolic disorders in high fat/high sucrose (HFHS)-fed mice. RESULTS: Treatment of HFHS-fed mice with CC prevented weight gain, lowered fat accumulation and blunted metabolic inflammation and endotoxaemia. CC-treated mice displayed improved glucose tolerance and insulin sensitivity and were also fully protected against hepatic steatosis. These effects were linked to increased energy expenditure and upregulation of uncoupling protein 1 mRNA expression in the brown adipose tissue (BAT) of CC-treated mice, which strongly correlated with the mRNA expression of the membrane bile acid (BA) receptor TGR5. Moreover, CC-treated mice showed altered plasma BA pool size and composition and drastic changes in the GM (eg, bloom of Akkermansia muciniphila and a strong reduction of Lactobacillus). Germ-free (GF) mice reconstituted with the GM of CC-treated mice gained less weight and displayed higher energy expenditure than GF-mice colonised with the FM of HFHS controls. CONCLUSION: Our results show that CC prevents visceral and liver fat deposition through BAT activation and increased energy expenditure, a mechanism that is dependent on the GM and linked to major changes in the BA pool size and composition.


Assuntos
Metabolismo Energético/fisiologia , Frutas/química , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/prevenção & controle , Animais , Ácido Ascórbico/uso terapêutico , Glicemia/metabolismo , Endotoxemia/prevenção & controle , Fígado Gorduroso/microbiologia , Fígado Gorduroso/fisiopatologia , Fígado Gorduroso/prevenção & controle , Transplante de Microbiota Fecal , Homeostase/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/microbiologia , Obesidade/fisiopatologia , Paniculite/prevenção & controle , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
11.
J Nutr Sci ; 7: e19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854398

RESUMO

Ageing is characterised by memory deficits, associated with brain plasticity impairment. Polyphenols from berries, such as flavan-3-ols, anthocyanins, and resveratrol, have been suggested to modulate synaptic plasticity and cognitive processes. In the present study we assessed the preventive effect of a polyphenol-rich extract from grape and blueberry (PEGB), with high concentrations of flavonoids, on age-related cognitive decline in mice. Adult and aged (6 weeks and 16 months) mice were fed a PEGB-enriched diet for 14 weeks. Learning and memory were assessed using the novel object recognition and Morris water maze tasks. Brain polyphenol content was evaluated with ultra-high-performance LC-MS/MS. Hippocampal neurotrophin expression was measured using quantitative real-time PCR. Finally, the effect of PEGB on adult hippocampal neurogenesis was assessed by immunochemistry, counting the number of cells expressing doublecortin and the proportion of cells with dendritic prolongations. The combination of grape and blueberry polyphenols prevented age-induced learning and memory deficits. Moreover, it increased hippocampal nerve growth factor (Ngf) mRNA expression. Aged supplemented mice displayed a greater proportion of newly generated neurons with prolongations than control age-matched mice. Some of the polyphenols included in the extract were detected in the brain in the native form or as metabolites. Aged supplemented mice also displayed a better survival rate. These data suggest that PEGB may prevent age-induced cognitive decline. Possible mechanisms of action include a modulation of brain plasticity. Post-treatment detection of phenolic compounds in the brain suggests that polyphenols may act directly at the central level, while they can make an impact on mouse survival through a potential systemic effect.

12.
Food Chem ; 240: 607-614, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946319

RESUMO

Among many functional foods and their phytochemicals, ingestion of soybean (Glycine max) is highly correlated to reduced risk of cardiovascular diseases. Validation of potential health benefits of functional foods requires information about the bioavailability and metabolism of bioactive compounds. In this context, several phase I and II metabolites of isoflavones were target-analyzed in the plasma of rats acutely supplemented with soybean embryo extract. A daidzein metabolite, 7,8,4'-trihydroxyisoflavone (7,8,4'-THI), was found to have the highest average area under curve value (574.3±112.8). Therefore, its potential prevention effect on atherosclerosis was investigated using monocyte-endothelial cell adhesion assay. Different from its precursor daidzein or daidzin, 7,8,4'-THI attenuated adhesion of THP-1 monocytes to tumor necrosis factor-alpha (TNF-α) stimulated human umbilical vein endothelial cells (HUVECs). In addition, 7,8,4'-THI significantly downregulated TNF-α stimulated the expression of vascular cell adhesion molecule-1 and monocyte chemotactic protein-1 and phosphorylation of IκB kinase and IκBα involved in the initiation of atherosclerosis in HUVECs. Therefore, 7,8,4'-THI, a highly bioavailable hydroxylated isoflavone metabolite, has potential anti-atherosclerotic effect via inhibiting monocyte-endothelial adhesion.


Assuntos
Glycine max , Animais , Adesão Celular , Humanos , Isoflavonas , Monócitos , Ratos , Fator de Necrose Tumoral alfa
13.
Diabetologia ; 61(4): 919-931, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29270816

RESUMO

AIMS/HYPOTHESIS: There is growing evidence that fruit polyphenols exert beneficial effects on the metabolic syndrome, but the underlying mechanisms remain poorly understood. In the present study, we aimed to analyse the effects of polyphenolic extracts from five types of Arctic berries in a model of diet-induced obesity. METHODS: Male C57BL/6 J mice were fed a high-fat/high-sucrose (HFHS) diet and orally treated with extracts of bog blueberry (BBE), cloudberry (CLE), crowberry (CRE), alpine bearberry (ABE), lingonberry (LGE) or vehicle (HFHS) for 8 weeks. An additional group of standard-chow-fed, vehicle-treated mice was included as a reference control for diet-induced obesity. OGTTs and insulin tolerance tests were conducted, and both plasma insulin and C-peptide were assessed throughout the OGTT. Quantitative PCR, western blot analysis and ELISAs were used to assess enterohepatic immunometabolic features. Faecal DNA was extracted and 16S rRNA gene-based analysis was used to profile the gut microbiota. RESULTS: Treatment with CLE, ABE and LGE, but not with BBE or CRE, prevented both fasting hyperinsulinaemia (mean ± SEM [pmol/l]: chow 67.2 ± 12.3, HFHS 153.9 ± 19.3, BBE 114.4 ± 14.3, CLE 82.5 ± 13.0, CRE 152.3 ± 24.4, ABE 90.6 ± 18.0, LGE 95.4 ± 10.5) and postprandial hyperinsulinaemia (mean ± SEM AUC [pmol/l × min]: chow 14.3 ± 1.4, HFHS 31.4 ± 3.1, BBE 27.2 ± 4.0, CLE 17.7 ± 2.2, CRE 32.6 ± 6.3, ABE 22.7 ± 18.0, LGE 23.9 ± 2.5). None of the berry extracts affected C-peptide levels or body weight gain. Levels of hepatic serine phosphorylated Akt were 1.6-, 1.5- and 1.2-fold higher with CLE, ABE and LGE treatment, respectively, and hepatic carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-1 tyrosine phosphorylation was 0.6-, 0.7- and 0.9-fold increased in these mice vs vehicle-treated, HFHS-fed mice. These changes were associated with reduced liver triacylglycerol deposition, lower circulating endotoxins, alleviated hepatic and intestinal inflammation, and major gut microbial alterations (e.g. bloom of Akkermansia muciniphila, Turicibacter and Oscillibacter) in CLE-, ABE- and LGE-treated mice. CONCLUSIONS/INTERPRETATION: Our findings reveal novel mechanisms by which polyphenolic extracts from ABE, LGE and especially CLE target the gut-liver axis to protect diet-induced obese mice against metabolic endotoxaemia, insulin resistance and hepatic steatosis, which importantly improves hepatic insulin clearance. These results support the potential benefits of these Arctic berries and their integration into health programmes to help attenuate obesity-related chronic inflammation and metabolic disorders. DATA AVAILABILITY: All raw sequences have been deposited in the public European Nucleotide Archive server under accession number PRJEB19783 ( https://www.ebi.ac.uk/ena/data/view/PRJEB19783 ).


Assuntos
Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Resistência à Insulina , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Peptídeo C/sangue , Dieta Hiperlipídica , Endotoxemia/metabolismo , Frutas/química , Glucose/metabolismo , Homeostase , Insulina/sangue , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , RNA Ribossômico 16S/genética , Fatores de Tempo
14.
Mol Metab ; 6(12): 1563-1573, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29107524

RESUMO

OBJECTIVE: Previous studies have reported that polyphenol-rich extracts from various sources can prevent obesity and associated gastro-hepatic and metabolic disorders in diet-induced obese (DIO) mice. However, whether such extracts can reverse obesity-linked metabolic alterations remains unknown. In the present study, we aimed to investigate the potential of a polyphenol-rich extract from cranberry (CE) to reverse obesity and associated metabolic disorders in DIO-mice. METHODS: Mice were pre-fed either a Chow or a High Fat-High Sucrose (HFHS) diet for 13 weeks to induce obesity and then treated either with CE (200 mg/kg, Chow + CE, HFHS + CE) or vehicle (Chow, HFHS) for 8 additional weeks. RESULTS: CE did not reverse weight gain or fat mass accretion in Chow- or HFHS-fed mice. However, HFHS + CE fully reversed hepatic steatosis and this was linked to upregulation of genes involved in lipid catabolism (e.g., PPARα) and downregulation of several pro-inflammatory genes (eg, COX2, TNFα) in the liver. These findings were associated with improved glucose tolerance and normalization of insulin sensitivity in HFHS + CE mice. The gut microbiota of HFHS + CE mice was characterized by lower Firmicutes to Bacteroidetes ratio and a drastic expansion of Akkermansia muciniphila and, to a lesser extent, of Barnesiella spp, as compared to HFHS controls. CONCLUSIONS: Taken together, our findings demonstrate that CE, without impacting body weight or adiposity, can fully reverse HFHS diet-induced insulin resistance and hepatic steatosis while triggering A. muciniphila blooming in the gut microbiota, thus underscoring the gut-liver axis as a primary target of cranberry polyphenols.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Resistência à Insulina , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Vaccinium macrocarpon/química , Aumento de Peso/efeitos dos fármacos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Polifenóis/análise , Polifenóis/uso terapêutico
15.
Br J Nutr ; 117(4): 519-531, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28290272

RESUMO

Plant-derived foods rich in polyphenols are associated with several cardiometabolic health benefits, such as reduced postprandial hyperglycaemia. However, their impact on whole-body insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp technique remains under-studied. We aimed to determine the effects of strawberry and cranberry polyphenols (SCP) on insulin sensitivity, glucose tolerance, insulin secretion, lipid profile, inflammation and oxidative stress markers in free-living insulin-resistant overweight or obese human subjects (n 41) in a parallel, double-blind, controlled and randomised clinical trial. The experimental group consumed an SCP beverage (333 mg SCP) daily for 6 weeks, whereas the Control group received a flavour-matched Control beverage that contained 0 mg SCP. At the beginning and at the end of the experimental period, insulin sensitivity was assessed by a hyperinsulinaemic-euglycaemic clamp, and glucose tolerance and insulin secretion by a 2-h oral glucose tolerance test (OGTT). Insulin sensitivity increased in the SCP group as compared with the Control group (+0·9 (sem 0·5)×10-3 v. -0·5 (sem 0·5)×10-3 mg/kg per min per pmol, respectively, P=0·03). Compared with the Control group, the SCP group had a lower first-phase insulin secretion response as measured by C-peptide levels during the first 30 min of the OGTT (P=0·002). No differences were detected between the two groups for lipids and markers of inflammation and oxidative stress. A 6-week dietary intervention with 333 mg of polyphenols from strawberries and cranberries improved insulin sensitivity in overweight and obese non-diabetic, insulin-resistant human subjects but was not effective in improving other cardiometabolic risk factors.


Assuntos
Fragaria/química , Resistência à Insulina , Insulina/sangue , Obesidade , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Vaccinium macrocarpon/química , Glicemia/metabolismo , Peptídeo C/sangue , Diabetes Mellitus , Método Duplo-Cego , Feminino , Frutas/química , Teste de Tolerância a Glucose , Humanos , Inflamação/sangue , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/dietoterapia , Estresse Oxidativo/efeitos dos fármacos
16.
J Alzheimers Dis ; 55(1): 115-135, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27662290

RESUMO

No effective preventive treatment is available for age-related cognitive decline and Alzheimer's disease (AD). Epidemiological studies indicate that a diet rich in fruit is associated with cognitive improvement. It was thus proposed that high polyphenol concentrations found in berries can prevent cognitive impairment associated with aging and AD. Therefore, the Neurophenols project aimed at investigating the effects of a polyphenolic extract from blueberries and grapes (PEBG) in the triple-transgenic (3xTg-AD) mouse model of AD, which develops AD neuropathological markers, including amyloid-ß plaques and neurofibrillary tangles, leading to memory deficits. In this study, 12-month-old 3xTg-AD and NonTg mice were fed a diet supplemented with standardized PEBG (500 or 2500 mg/kg) for 4 months (n = 15-20/group). A cognitive evaluation with the novel object recognition test was performed at 15 months of age and mice were sacrificed at 16 months of age. We observed that PEBG supplementation with doses of 500 or 2500 mg/kg prevented the decrease in novel object recognition observed in both 15-month-old 3xTg-AD mice and NonTg mice fed a control diet. Although PEBG treatment did not reduce Aß and tau pathologies, it prevented the decrease in mature BDNF observed in 16-month-old 3xTg-AD mice. Finally, plasma concentrations of phenolic metabolites, such as dihydroxyphenyl valerolactone, a microbial metabolite of epicatechin, positively correlated with memory performances in supplemented mice. The improvement in object recognition observed in 3xTg-AD mice after PEBG administration supports the consumption of polyphenols-rich extracts to prevent memory impairment associated with age-related disease, without significant effects on classical AD neuropathology.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Mirtilos Azuis (Planta) , Nootrópicos/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Vitis , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Frutas , Humanos , Masculino , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Proteínas tau/genética , Proteínas tau/metabolismo
17.
J Agric Food Chem ; 63(31): 6999-7008, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26207764

RESUMO

Blueberries contain significant amounts of flavonoids to which a number of beneficial health effects in humans have been associated. The present study investigated the effect of a polyphenol-rich lowbush blueberry (Vaccinium angustifolium Ait.) extract on the two main etiologic components of periodontitis, a multifactorial disorder affecting the supporting structures of the teeth. Phenolic acids, flavonoids (flavonols, anthocyanins, flavan-3-ols), and procyanidins made up 16.6, 12.9, and 2.7% of the blueberry extract, respectively. The blueberry extract showed antibacterial activity (MIC = 1 mg/mL) against the periodontopathogenic bacterium Fusobacterium nucleatum. This property may result from the ability of blueberry polyphenols to chelate iron. Moreover, the blueberry extract at 62.5 µg/mL inhibited F. nucleatum biofilm formation by 87.5 ± 2.3%. Subsequently, the ability of the blueberry extract to inhibit the NF-κB signaling pathway in U937-3xκB cells was investigated. The blueberry extract dose-dependently inhibited the activation of NF-κB induced by F. nucleatum. In addition, a pretreatment of macrophages with the blueberry extract (62.5 µg/mL) inhibited the secretion of IL-1ß, TNF-α, and IL-6 by 87.3 ± 1.3, 80.7 ± 5.6, and 28.2 ± 9.3%, respectively, following a stimulation with F. nucleatum. Similarly, the secretion of MMP-8 and MMP-9 was also dose-dependently inhibited. This dual antibacterial and anti-inflammatory action of lowbush blueberry polyphenols suggests that they may be promising candidates for novel therapeutic agents.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Mirtilos Azuis (Planta)/química , Fusobacterium nucleatum/efeitos dos fármacos , Doenças Periodontais/microbiologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Fusobacterium nucleatum/crescimento & desenvolvimento , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Doenças Periodontais/imunologia
18.
Gut ; 64(6): 872-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25080446

RESUMO

OBJECTIVE: The increasing prevalence of obesity and type 2 diabetes (T2D) demonstrates the failure of conventional treatments to curb these diseases. The gut microbiota has been put forward as a key player in the pathophysiology of diet-induced T2D. Importantly, cranberry (Vaccinium macrocarpon Aiton) is associated with a number of beneficial health effects. We aimed to investigate the metabolic impact of a cranberry extract (CE) on high fat/high sucrose (HFHS)-fed mice and to determine whether its consequent antidiabetic effects are related to modulations in the gut microbiota. DESIGN: C57BL/6J mice were fed either a chow or a HFHS diet. HFHS-fed mice were gavaged daily either with vehicle (water) or CE (200 mg/kg) for 8 weeks. The composition of the gut microbiota was assessed by analysing 16S rRNA gene sequences with 454 pyrosequencing. RESULTS: CE treatment was found to reduce HFHS-induced weight gain and visceral obesity. CE treatment also decreased liver weight and triglyceride accumulation in association with blunted hepatic oxidative stress and inflammation. CE administration improved insulin sensitivity, as revealed by improved insulin tolerance, lower homeostasis model assessment of insulin resistance and decreased glucose-induced hyperinsulinaemia during an oral glucose tolerance test. CE treatment was found to lower intestinal triglyceride content and to alleviate intestinal inflammation and oxidative stress. Interestingly, CE treatment markedly increased the proportion of the mucin-degrading bacterium Akkermansia in our metagenomic samples. CONCLUSIONS: CE exerts beneficial metabolic effects through improving HFHS diet-induced features of the metabolic syndrome, which is associated with a proportional increase in Akkermansia spp.


Assuntos
Enterite/tratamento farmacológico , Enterite/microbiologia , Resistência à Insulina , Obesidade Abdominal/prevenção & controle , Extratos Vegetais/farmacologia , Vaccinium macrocarpon/química , Verrucomicrobia/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Endotoxemia/etiologia , Endotoxemia/prevenção & controle , Hepatite/prevenção & controle , Homeostase/efeitos dos fármacos , Intestinos/microbiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Lipopolissacarídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Obesidade Abdominal/etiologia , Tamanho do Órgão/efeitos dos fármacos , Polifenóis/análise , Polifenóis/farmacologia , Triglicerídeos/metabolismo , Verrucomicrobia/isolamento & purificação
19.
Clin Sci (Lond) ; 128(3): 197-212, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25069567

RESUMO

Cranberry fruit has been reported to have high antioxidant effectiveness that is potentially linked to its richness in diversified polyphenolic content. The aim of the present study was to determine the role of cranberry polyphenolic fractions in oxidative stress (OxS), inflammation and mitochondrial functions using intestinal Caco-2/15 cells. The combination of HPLC and UltraPerformance LC®-tandem quadrupole (UPLC-TQD) techniques allowed us to characterize the profile of low, medium and high molecular mass polyphenolic compounds in cranberry extracts. The medium molecular mass fraction was enriched with flavonoids and procyanidin dimers whereas procyanidin oligomers (DP > 4) were the dominant class of polyphenols in the high molecular mass fraction. Pre-incubation of Caco-2/15 cells with these cranberry extracts prevented iron/ascorbate-mediated lipid peroxidation and counteracted lipopolysaccharide-mediated inflammation as evidenced by the decrease in pro-inflammatory cytokines (TNF-α and interleukin-6), cyclo-oxygenase-2 and prostaglandin E2. Cranberry polyphenols (CP) fractions limited both nuclear factor κB activation and Nrf2 down-regulation. Consistently, cranberry procyanidins alleviated OxS-dependent mitochondrial dysfunctions as shown by the rise in ATP production and the up-regulation of Bcl-2, as well as the decline of protein expression of cytochrome c and apoptotic-inducing factor. These mitochondrial effects were associated with a significant stimulation of peroxisome-proliferator-activated receptor γ co-activator-1-α, a central inducing factor of mitochondrial biogenesis and transcriptional co-activator of numerous downstream mediators. Finally, cranberry procyanidins forestalled the effect of iron/ascorbate on the protein expression of mitochondrial transcription factors (mtTFA, mtTFB1, mtTFB2). Our findings provide evidence for the capacity of CP to reduce intestinal OxS and inflammation while improving mitochondrial dysfunction.


Assuntos
Antioxidantes/química , Inflamação/tratamento farmacológico , Intestinos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo , Extratos Vegetais/uso terapêutico , Vaccinium macrocarpon/química , Trifosfato de Adenosina/metabolismo , Apoptose , Biflavonoides/química , Células CACO-2 , Catequina/química , Dinoprostona/metabolismo , Ácidos Graxos/química , Humanos , Peroxidação de Lipídeos , Fosforilação Oxidativa , Proantocianidinas/química
20.
PLoS One ; 8(1): e53725, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372666

RESUMO

UNLABELLED: Since gastrointestinal mucosa is constantly exposed to reactive oxygen species from various sources, the presence of antioxidants may contribute to the body's natural defenses against inflammatory diseases. HYPOTHESIS: To define the polyphenols extracted from dried apple peels (DAPP) and determine their antioxidant and anti-inflammatory potential in the intestine. Caco-2/15 cells were used to study the role of DAPP preventive actions against oxidative stress (OxS) and inflammation induced by iron-ascorbate (Fe/Asc) and lipopolysaccharide (LPS), respectively. RESULTS: The combination of HPLC with fluorescence detection, HPLC-ESI-MS TOF and UPLC-ESI-MS/MS QQQ allowed us to characterize the phenolic compounds present in the DAPP (phenolic acids, flavonol glycosides, flavan-3-ols, procyanidins). The addition of Fe/Asc to Caco-2/15 cells induced OxS as demonstrated by the rise in malondialdehyde, depletion of n-3 polyunsaturated fatty acids, and alterations in the activity of endogenous antioxidants (SOD, GPx, G-Red). However, preincubation with DAPP prevented Fe/Asc-mediated lipid peroxidation and counteracted LPS-mediated inflammation as evidenced by the down-regulation of cytokines (TNF-α and IL-6), and prostaglandin E2. The mechanisms of action triggered by DAPP induced also a down-regulation of cyclooxygenase-2 and nuclear factor-κB, respectively. These actions were accompanied by the induction of Nrf2 (orchestrating cellular antioxidant defenses and maintaining redox homeostasis), and PGC-1α (the "master controller" of mitochondrial biogenesis). CONCLUSION: Our findings provide evidence of the capacity of DAPP to reduce OxS and inflammation, two pivotal processes involved in inflammatory bowel diseases.


Assuntos
Antioxidantes/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Inflamação/prevenção & controle , Malus/química , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Células CACO-2 , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Mucosa Gástrica/citologia , Mucosa Gástrica/metabolismo , Expressão Gênica/efeitos dos fármacos , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Modelos Biológicos , NF-kappa B/genética , NF-kappa B/metabolismo , Polifenóis/química , Polifenóis/isolamento & purificação , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA