Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
bioRxiv ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38645178

RESUMO

Diffuse gliomas are epigenetically dysregulated, immunologically cold, and fatal tumors characterized by mutations in isocitrate dehydrogenase (IDH). Although IDH mutations yield a uniquely immunosuppressive tumor microenvironment, the regulatory mechanisms that drive the immune landscape of IDH mutant (IDHm) gliomas remain unknown. Here, we reveal that transcriptional repression of retinoic acid (RA) pathway signaling impairs both innate and adaptive immune surveillance in IDHm glioma through epigenetic silencing of retinol binding protein 1 (RBP1) and induces a profound anti-inflammatory landscape marked by loss of inflammatory cell states and infiltration of suppressive myeloid phenotypes. Restorative retinoic acid therapy in murine glioma models promotes clonal CD4 + T cell expansion and induces tumor regression in IDHm, but not IDH wildtype (IDHwt), gliomas. Our findings provide a mechanistic rationale for RA immunotherapy in IDHm glioma and is the basis for an ongoing investigator-initiated, single-center clinical trial investigating all-trans retinoic acid (ATRA) in recurrent IDHm human subjects.

2.
Diagnostics (Basel) ; 14(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611655

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is among the most lethal urologic malignancies once metastatic. Current treatment approaches for metastatic RCC (mRCC) involve immune checkpoint inhibitors (ICIs) that target the PD-L1/PD-1 axis. High PD-L1 expression in tumor tissue has been identified as a negative prognostic factor in RCC. However, the role of PD-L1 as a liquid biomarker has not yet been fully explored. Herein, we analyze urine levels of PD-L1 in mRCC patients before and after either ICI therapy or surgical intervention, as well as in a series of patients with treatment-naïve RCC. PATIENTS AND METHODS: The mid-stream urine of patients with mRCC (n = 4) or treatment-naïve RCC, i.e., prior to surgery from two centers (cohort I, n = 49: cohort II, n = 29) was analyzed for PD-L1 by ELISA. The results from cohort I were compared to a control group consisting of patients treated for non-malignant urologic diseases (n = 31). In the mRCC group, urine PD-L1 levels were measured before and after tumor nephrectomy (n = 1) or before and after ICI therapy (n = 3). Exosomal PD-L1 in the urine was analyzed in selected patients by immunoblotting. RESULTS: A strong decrease in urine PD-L1 levels was found after tumor nephrectomy or following systemic treatment with ICIs. In patients with treatment-naïve RCC (cohort I), urine PD-L1 levels were significantly elevated in the RCC group in comparison to the control group (median 59 pg/mL vs. 25.7 pg/mL, p = 0.011). PD-L1 urine levels were found to be elevated, in particular, in low-grade RCCs in cohorts I and II. Exosomal PD-L1 was detected in the urine of a subset of patients. CONCLUSION: In this proof-of-concept study, we show that PD-L1 can be detected in the urine of RCC patients. Urine PD-L1 levels were found to correlate with the treatment response in mRCC patients and were significantly elevated in treatment-naïve RCC patients.

3.
Cancers (Basel) ; 16(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254737

RESUMO

BACKGROUND: Grade 2 and 3 and dedifferentiated chondrosarcomas (CS) are frequently associated with isocitrate dehydrogenase (IDH) mutations and often exhibit a poor clinical outcome. Treatment is limited mainly to surgery. Defining IDH status (wild type (WT) and mutant) and the associated transcriptome may prove useful in determining other therapeutic options in these neoplasms. METHODS: Formalin-fixed paraffin-embedded material from 69 primary and recurrent grade 2, 3 and dedifferentiated CS was obtained. DNA sequencing for IDH1 and IDH2 mutations (n = 47) and RNA sequencing via Nextseq 2000 (n = 14) were performed. Differentially expressed genes (DEGs) were identified and used to predict aberrant biological pathways with Ingenuity Pathway Analysis (IPA) software (Qiagen). Gene Set Enrichment Analyses (GSEA) using subsets C3, C5 and C7 were performed. Differentially expressed genes were validated by immunohistochemistry. Outcome analysis was performed using the Wilcoxon test. RESULTS: A set of 69 CS (28 females, 41 males), average age 65, distributed among femur, pelvis, humerus, and chest wall were identified from available clinical material. After further selection based on available IDH status, we evaluated 15 IDH WT and 32 IDH mutant tumors as part of this dataset. Out of 15 IDH WT tumors, 7 involved the chest wall/scapula, while 1 of 32 mutants arose in the scapula. There were far more genes overexpressed in IDH WT tumors compared to IDH mutant tumors. Furthermore, IDH WT and IDH mutant tumors were transcriptomically distinct in the IPA and GSEA, with IDH mutant tumors showing increased activity in methylation pathways and endochondral ossification, while IDH WT tumors showed more activity in normal matrix development pathways. Validation immunohistochemistry demonstrated expression of WT1 and AR in IDH WT tumors, but not in IDH mutants. SATB2 was expressed in IDH mutant tumors and not in WT tumors. Outcome analysis revealed differences in overall survival between mutant and WT tumors (p = 0.04), dedifferentiated mutant and higher-grade (2, 3) mutant tumors (p = 0.03), and dedifferentiated mutant and higher-grade (2, 3) WT tumors (p = 0.03). The longest survival times were observed in patients with higher-grade WT tumors, while patients with dedifferentiated mutant tumors showed the lowest survival. Generally, patients with IDH WT tumors displayed longer survival in both the higher-grade and dedifferentiated groups. CONCLUSIONS: Grade 2, 3 and dedifferentiated chondrosarcomas are further characterized by IDH status, which in turn informs transcriptomic phenotype and overall survival. The transcriptome is distinct depending on IDH status, and implies different treatment targets.

4.
Cancers (Basel) ; 15(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38136261

RESUMO

Metastatic renal cell carcinoma (RCC) is among the most lethal urological malignancies. However, small, localized RCCs (≤7 cm, stage T1) have an excellent prognosis. There is a rare patient subgroup diagnosed with synchronous distant metastasis (T1N0M1), of which very little is known in terms of survival outcomes and underlying disease biology. Herein, we examined the long-term survival of 27 patients with clear cell RCC (ccRCC) stage T1N0M1 in comparison to 18 patients without metastases (T1N0M0). Tumor tissue was stained by immunohistochemistry for CD8+ tumor infiltrating lymphocytes (TILs). As expected, patients with stage T1N0M1 showed a significantly worse median cancer specific survival (CSS; 2.8 years) than patients with stage T1N0M0 (17.7 years; HR 0.077; 95% CI, 0.022-0.262). However, eight patients (29.6%) with ccRCC stage T1N0M1 survived over five years, and three of those patients (11.1%) survived over a decade. Some of these patients benefitted from an intensified, multimodal treatment including metastasis-directed therapy. The number of CD8+ TILs was substantially higher in stage T1N0M1 ccRCCs than in stage T1N0M0 ccRCCs, suggesting a more aggressive tumor biology. In conclusion, long-term survival is possible in patients with ccRCC stage T1N0M1, with some patients benefitting from an intensified, multimodal treatment approach.

5.
Cancers (Basel) ; 15(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894418

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by a high degree of intratumoral heterogeneity (ITH). Besides genomic ITH, there is considerable functional ITH, which encompasses spatial niches with distinct proliferative and signaling activities. The full extent of functional spatial heterogeneity in ccRCC is incompletely understood. In the present study, a total of 17 ccRCC tissue specimens from different sites (primary tumor, n = 11; local recurrence, n = 1; distant metastasis, n = 5) were analyzed using digital spatial profiling (DSP) of protein expression. A total of 128 regions of interest from the tumor periphery and tumor center were analyzed for the expression of 46 proteins, comprising three major signaling pathways as well as immune cell markers. Results were correlated to clinico-pathological variables. The differential expression of granzyme B was validated using conventional immunohistochemistry and was correlated to the cancer-specific patient survival. We found that a total of 37 proteins were differentially expressed between the tumor periphery and tumor center. Thirty-five of the proteins were upregulated in the tumor periphery compared to the center. These included proteins involved in cell proliferation, MAPK and PI3K/AKT signaling, apoptosis regulation, epithelial-to-mesenchymal transition, as well as immune cell markers. Among the most significantly upregulated proteins in the tumor periphery was granzyme B. Granzyme B upregulation in the tumor periphery correlated with a significantly reduced cancer-specific patient survival. In conclusion, this study highlights the unique cellular contexture of the tumor periphery in ccRCC. The correlation between granzyme B upregulation in the tumor periphery and patient survival suggests local selection pressure for aggressive tumor growth and disease progression. Our results underscore the potential of spatial biology for biomarker discovery in ccRCC and cancer in general.

6.
Cancer Immunol Immunother ; 72(6): 1603-1618, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36562826

RESUMO

Clear cell renal cell carcinoma (ccRCC) is an immunologically vulnerable tumor entity, and immune checkpoint inhibitors are now widely used to treat patients with advanced disease. Whether and to what extent immune responses in ccRCC are shaped by genetic alterations, however, is only beginning to emerge. In this proof-of-concept study, we performed a detailed correlative analysis of the mutational and immunological landscapes in a series of 23 consecutive kidney cancer patients. We discovered that a high infiltration with CD8 + T cells was not dependent on the number of driver mutations but rather on the presence of specific mutational events, namely pathogenic mutations in PTEN or BAP1. This observation encouraged us to compare mechanisms of T cell suppression in the context of four different genetic patterns, i.e., the presence of multiple drivers, a PTEN or BAP1 mutation, or the absence of detectable driver mutations. We found that ccRCCs harboring a PTEN or BAP1 mutation showed the lowest level of Granzyme B positive tumor-infiltrating lymphocytes (TILs). A multiplex immunofluorescence analysis revealed a significant number of CD8 + TILs in the vicinity of CD68 + macrophages/monocytes in the context of a BAP1 mutation but not in the context of a PTEN mutation. In line with this finding, direct interactions between CD8 + TILs and CD163 + M2-polarized macrophages were found in BAP1-mutated ccRCC but not in tumors with other mutational patterns. While an absence of driver mutations was associated with more CD8 + TILs in the vicinity of FOXP3 + Tregs and CD68 + monocytes/macrophages, the presence of multiple driver mutations was, to our surprise, not found to be strongly associated with immunosuppressive mechanisms. Our results highlight the role of genetic alterations in shaping the immunological landscape of ccRCC. We discovered a remarkable heterogeneity of mechanisms that can lead to T cell suppression, which supports the need for personalized immune oncological approaches.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Proteínas de Ligação a DNA/genética , Neoplasias Renais/patologia , Fatores de Transcrição/genética , Mutação , Prognóstico , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , PTEN Fosfo-Hidrolase/genética
7.
Cancer ; 128(22): 4017-4026, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36125989

RESUMO

BACKGROUND: Cancer-related cognitive impairment (CRCI) has long-term effects on survivor quality of life, but CRCI research on patients with gastrointestinal stromal tumor (GIST) is lacking. The aims of this study were to investigate CRCI and concomitant quality of life among patients with GIST. METHODS: An online survey was used to assess CRCI in adult patients with GIST using the validated Functional Assessment of Cancer Therapy-Cognitive-v.3. Age, education, demographically indexed IQ, general health, and quality of life factors (e.g., fatigue, emotional distress) were also assessed. The online survey was administered through five international GIST and sarcoma support organizations. RESULTS: Over the 3-month recruitment period, the survey was completed by 485 participants: mean age, 57.80 (SD, 11.51), median 5 years after diagnosis. A majority (63.91%) reported experiencing cognitive symptoms with a significant negative quality of life impact. Controlling for age, patients with GIST ≥5 years after diagnosis reported worse cognitive function than those <5 years after diagnosis (p < .05) but did not differ in educational level or IQ. Whereas longer term survivors were more likely to have been treated with tyrosine kinase inhibitor (TKI) therapies, there was no observed association of TKI therapy with self-reported cognitive impairments. CONCLUSIONS: A majority of GIST patients report cognitive symptoms that have a negative impact on quality of life, with longer term survivors (≥5 years) tending to report more cognitive impairments. Given the success of TKI therapy to substantially increase overall survival of patients with GIST, addressing CRCI in clinical practice may improve long-term GIST survivor function and quality of life.


Assuntos
Disfunção Cognitiva , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Adulto , Humanos , Pessoa de Meia-Idade , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Qualidade de Vida , Autorrelato , Inquéritos e Questionários , Neoplasias Gastrointestinais/tratamento farmacológico
8.
Sci Rep ; 12(1): 8275, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585158

RESUMO

Although KIT-mutant GISTs can be effectively treated with tyrosine kinase inhibitors (TKIs), many patients develop resistance to imatinib mesylate (IM) as well as the FDA-approved later-line agents sunitinib, regorafenib and ripretinib. Resistance mechanisms mainly involve secondary mutations in the KIT receptor tyrosine kinase gene indicating continued dependency on the KIT signaling pathway. The fact that the type of secondary mutation confers either sensitivity or resistance towards TKIs and the notion that secondary mutations exhibit intra- and intertumoral heterogeneity complicates the optimal choice of treatment in the imatinib-resistant setting. Therefore, new strategies that target KIT independently of its underlying mutations are urgently needed. Homoharringtonine (HHT) is a first-in-class inhibitor of protein biosynthesis and is FDA-approved for the treatment of chronic myeloid leukemia (CML) that is resistant to at least two TKIs. HHT has also shown activity in KIT-mutant mastocytosis models, which are intrinsically resistant to imatinib and most other TKIs. We hypothesized that HHT could be effective in GIST through downregulation of KIT expression and subsequent decrease of KIT activation and downstream signaling. Testing several GIST cell line models, HHT led to a significant reduction in nascent protein synthesis and was highly effective in the nanomolar range in IM-sensitive and IM-resistant GIST cell lines. HHT treatment resulted in a rapid and complete abolishment of KIT expression and activation, while KIT mRNA levels were minimally affected. The response to HHT involved induction of apoptosis as well as cell cycle arrest. The antitumor activity of HHT was confirmed in a GIST xenograft model. Taken together, inhibition of protein biosynthesis is a promising strategy to overcome TKI resistance in GIST.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Mepesuccinato de Omacetaxina/farmacologia , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/metabolismo
9.
Front Oncol ; 12: 889686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619925

RESUMO

Renal cell carcinoma (RCC) is among the most lethal urological malignancies once metastatic. The introduction of immune checkpoint inhibitors has revolutionized the therapeutic landscape of metastatic RCC, nevertheless, a significant proportion of patients will experience disease progression. Novel treatment options are therefore still needed and in vitro and in vivo model systems are crucial to ultimately improve disease control. At the same time, RCC is characterized by a number of molecular and functional peculiarities that have the potential to limit the utility of pre-clinical model systems. This includes not only the well-known genomic intratumoral heterogeneity (ITH) of RCC but also a remarkable functional ITH that can be shaped by influences of the tumor microenvironment. Importantly, RCC is among the tumor entities, in which a high number of intratumoral cytotoxic T cells is associated with a poor prognosis. In fact, many of these T cells are exhausted, which represents a major challenge for modeling tumor-immune cell interactions. Lastly, pre-clinical drug development commonly relies on using phenotypic screening of 2D or 3D RCC cell culture models, however, the problem of "reverse engineering" can prevent the identification of the precise mode of action of drug candidates thus impeding their translation to the clinic. In conclusion, a holistic approach to model the complex "ecosystem RCC" will likely require not only a combination of model systems but also an integration of concepts and methods using artificial intelligence to further improve pre-clinical drug discovery.

10.
Urol Oncol ; 40(1): 8.e11-8.e18, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34325986

RESUMO

BACKGROUND: Mutations in DNA damage repair genes, in particular genes involved in homology-directed repair, define a subgroup of men with prostate cancer with a more unfavorable prognosis but a therapeutic vulnerability to PARP inhibition. In current practice, mutational testing of prostate cancer patients is commonly done late i.e., when the tumor is castration resistant. In addition, most sequencing panels do not include TP53, one of the most crucial tumor suppressor genes in human cancer. In this proof-of-concept study, we sought to extend the clinical use of these molecular markers by exploring the early prognostic impact of mutations in TP53 and DNA damage repair genes in men with primary, nonmetastatic prostate cancer undergoing radical prostatectomy (RPX). METHODS: Tumor specimens from a cohort of 68 RPX patients with intermediate (n = 11, 16.2%) or high-risk (n = 57, 83.8%) disease were analyzed by targeted next generation sequencing using a 37 DNA damage repair and checkpoint gene panel including TP53. Sequencing results were correlated to clinicopathologic variables as well as PSA persistence or time to PSA failure. In addition, the distribution of TP53 and DNA damage repair gene mutations was analyzed in three large publicly available datasets (TCGA, MSKCC and SU2C). RESULTS: Of 68 primary prostate cancers analyzed, 23 (33.8%) were found to harbor a mutation in either TP53 (n = 12, 17.6%) or a DNA damage repair gene (n = 11, 16.2%). The vast majority of these mutations (22 of 23, 95.7%) were detected in primary tumors from patients with high-risk features. These mutations were mutually exclusive in our cohort and additional data mining suggests an enrichment of DNA damage repair gene mutations in TP53 wild-type tumors. Mutations in either TP53 or a DNA damage repair gene were associated with a significantly worse prognosis after RPX. Importantly, the presence of TP53/DNA damage repair gene mutations was an independent risk factor for PSA failure or PSA persistence in multivariate Cox regression models. CONCLUSION: TP53 or DNA damage repair gene mutations are frequently detected in primary prostate cancer with high-risk features and define a subgroup of patients with an increased risk for PSA failure or persistence after RPX. The significant adverse impact of these alterations on patient prognosis may be exploited to identify men with prostate cancer who may benefit from a more intensified treatment.


Assuntos
Reparo do DNA/genética , Mutação , Neoplasias da Próstata/genética , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudo de Prova de Conceito
11.
Biomedicines ; 9(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072926

RESUMO

BACKGROUND: Systemic treatment options for metastatic renal cell carcinoma (RCC) have significantly expanded in recent years. However, patients refractory to tyrosine kinase and immune checkpoint inhibitors still have limited treatment options and patient-individualized approaches are largely missing. PATIENTS AND METHODS: In vitro drug screening of tumor-derived short-term cultures obtained from seven patients with clear cell RCC was performed. For one patient, a patient-derived xenograft (PDX) mouse model was established for in vivo validation experiments. Drug effects were further investigated in established RCC cell lines. RESULTS: The proteasome inhibitor carfilzomib was among the top hits identified in three of four patients in which an in vitro drug screening could be performed successfully. Carfilzomib also showed significant acute and long-term cytotoxicity in established RCC cell lines. The in vivo antitumoral activity of carfilzomib was confirmed in a same-patient PDX model. The cytotoxicity of carfilzomib was found to correlate with the level of accumulation of ubiquitinated proteins. CONCLUSIONS: In this proof-of-concept study, we show that patient-individualized in vitro drug screening and preclinical validation is feasible. However, the fact that carfilzomib failed to deliver a clinical benefit in RCC patients in a recent phase II trial unrelated to the present study underscores the complexities and limitations of this strategy.

12.
J Bone Oncol ; 29: 100370, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34094840

RESUMO

Dedifferentiated chondrosarcomas (DDCS) are highly malignant bimorphic mesenchymal tumors with poor outcome and limited treatment options. Genes and proteins involved in angiogenesis play an important role in the development of invasion and metastasis. Immunohistochemical stains targeting HSP70, pERK1/2 and VEGFA were applied to a TMA containing 29 DDCS cases representing both tumor components. Higher expression of HSP70 and pERK1/2 was noted in the dedifferentiated component. RNA sequencing performed in 8 paired cases of DDCS comparing well differentiated and dedifferentiated components, showed higher expression of several HSP70 family members and HSP90 in the dedifferentiated component. Furthermore, high mobility group AT-hook 2 (HMAG2) and SET nuclear proto-oncogene demonstrated higher expression in the dedifferentiated component. Thus, the well differentiated and dedifferentiated components of DDCS are different, histologically and transcriptomically. The dedifferentiated component of DDCS shows higher expression of markers that are associated with malignant behavior. Some of these may represent future treatment targets.

13.
Genes Chromosomes Cancer ; 60(5): 344-351, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33084183

RESUMO

Defects in DNA damage repair genes are more common in prostate cancer than previously thought. These alterations provide an opportunity for precision oncology approaches and a number of studies have now shown that PARP inhibitors can have significant antitumor activity in men with DNA damage repair-deficient metastatic castration-resistant prostate cancer. This review summarizes the key clinical trials related to the use of PARP inhibitors in prostate cancer. Besides clinical outcomes, toxicity, and PARP inhibitor resistance, the role of different DNA repair genes in the response to PARP inhibition will be discussed.


Assuntos
Reparo do DNA , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Próstata/genética , Animais , Humanos , Masculino , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo
14.
Clin Orthop Relat Res ; 479(3): 477-490, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32469486

RESUMO

BACKGROUND: In high-grade chondrosarcoma, 5-year survival is lower than 50%. Therefore, it is important that preclinical models that mimic the disease with the greatest possible fidelity are used to potentially develop new treatments. Accumulating evidence suggests that two-dimensional (2-D) cell culture may not accurately represent the tumor's biology. It has been demonstrated in other cancers that three-dimensional (3-D) cancer cell spheroids may recapitulate tumor biology and response to treatment with greater fidelity than traditional 2-D techniques. To our knowledge, the formation of patient-derived chondrosarcoma spheroids has not been described. QUESTIONS/PURPOSES: (1) Can patient-derived chondrosarcoma spheroids be produced? (2) Do spheroids recapitulate human chondrosarcoma better than 2-D cultures, both morphologically and molecularly? (3) Can chondrosarcoma spheroids provide an accurate model to test novel treatments? METHODS: Experiments to test the feasibility of spheroid formation of chondrosarcoma cells were performed using HT-1080, an established chondrosarcoma cell line, and two patient-derived populations, TP19-S26 and TP19-S115. Cells were cultured in flasks, trypsinized, and seeded into 96-well ultra-low attachment plates with culture media. After spheroids formed, they were monitored daily by bright-field microscopy. Spheroids were fixed using paraformaldehyde and embedded in agarose. After dehydration with isopropanol, paraffin-embedded spheroids were sectioned, and slides were stained with hematoxylin and eosin. To compare differences and similarities in gene expression between 2-D and 3-D chondrosarcoma cultures and primary tumors, and to determine whether these spheroids recapitulated the biology of chondrosarcoma, RNA was extracted from 2-D cultures, spheroids, and tumors. Quantitative polymerase chain reaction was performed to detect chondrosarcoma markers of interest, including vascular endothelial growth factor alpha, hypoxia-inducible factor 1α, COL2A1, and COL10A1. To determine whether 2-D and 3-D cultures responded differently to novel chondrosarcoma treatments, we compared their sensitivities to disulfiram and copper chloride treatment. To test their sensitivity to disulfiram and copper chloride treatment, 10,000 cells were seeded into 96-well plates for 2-D culturing and 3000 cells in each well for 3-D culturing. After treating the cells with disulfiram and copper for 48 hours, we detected cell viability using quantitative presto-blue staining and measured via plate reader. RESULTS: Cell-line and patient-derived spheroids were cultured and monitored over 12 days. Qualitatively, we observed that HT-1080 demonstrated unlimited growth, while TP19-S26 and TP19-S115 contracted during culturing relative to their initial size. Hematoxylin and eosin staining of HT-1080 spheroids revealed that cell-cell attachments were more pronounced at the periphery of the spheroid structure than at the core, while the core was less dense. Spheroids derived from the intermediate-grade chondrosarcoma TP19-S26 were abundant in extracellular matrix, and spheroids derived from the dedifferentiated chondrosarcoma TP19-S115 had a higher cellularity and heterogeneity with spindle cells at the periphery. In the HT-1080 cells, differences in gene expression were appreciated with spheroids demonstrating greater expressions of VEGF-α (1.01 ± 0.16 versus 6.48 ± 0.55; p = 0.003), COL2A1 (1.00 ± 0.10 versus 7.46 ± 2.52; p < 0.001), and COL10A1 (1.01 ± 0.19 versus 22.53 ± 4.91; p < 0.001). Differences in gene expressions were also noted between primary tumors, spheroids, and 2-D cultures in the patient-derived samples TP19-S26 and TP19-S115. TP19-S26 is an intermediate-grade chondrosarcoma. With the numbers we had, we could not detect a difference in VEGF-α and HIF1α gene expression compared with the primary tumor. COL2A1 (1.00 ± 0.14 versus 1.76 ± 0.10 versus 335.66 ± 31.13) and COL10A1 (1.06 ± 0.378 versus 5.98 ± 0.45 versus 138.82 ± 23.4) expressions were both greater in the tumor (p (COL2A1) < 0.001; p (COL10A1) < 0.0001) and 3-D cultures (p (COL2A1) = 0.004; p (COL10A1) < 0.0001) compared with 2-D cultures. We could not demonstrate a difference in VEGF-α and HIF1α expressions in TP19-S115, a dedifferentiated chondrosarcoma, in the tumor compared with 2-D and 3-D cultures. COL2A1 (1.00 ± 0.02 versus 1.86 ± 0.18 versus 2.95 ± 0.56) and COL10A1 (1.00 ± 0.03 versus 5.52 ± 0.66 versus 3.79 ± 0.36) expressions were both greater in spheroids (p (COL2A1) = 0.003; p (COL10A1) < 0.0001) and tumors (p (COL2A1) < 0.001; p (COL10A1) < 0.0001) compared with 2-D cultures. Disulfiram-copper chloride treatment demonstrated high cytotoxicity in HT-1080 and SW-1353 chondrosarcoma cells grown in the 2-D monolayer, but 3-D spheroids were highly resistant to this treatment. CONCLUSION: We provide preliminary findings that it is possible to generate 3-D spheroids from chondrosarcoma cell lines and two human chondrosarcomas (one dedifferentiated chondrosarcoma and one intermediate-grade chondrosarcoma). Chondrosarcoma spheroids derived from human tumors demonstrated morphology more reminiscent of primary tumors than cells grown in 2-D culture. Spheroids displayed similar expressions of cartilage markers as the primary tumor, and we observed a higher expression of collagen markers in the spheroids compared with cells grown in monolayer. Spheroids also demonstrated greater chemotherapy resistance than monolayer cells, but more patient-derived spheroids are needed to further conclude that 3-D cultures may mimic the chemoresistance that chondrosarcomas demonstrate clinically. Additional studies on patient-derived chondrosarcoma spheroids are warranted. CLINICAL RELEVANCE: Chondrosarcomas demonstrate resistance to chemotherapy and radiation, and we believe that if they can be replicated, models such as 3-D spheroids may provide a method to test novel treatments for human chondrosarcoma. Additional comprehensive genomic studies are required to compare 2-D and 3-D models with the primary tumor to determine the most effective way to study this disease in vitro.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Modelos Biológicos , Esferoides Celulares , Células Tumorais Cultivadas , Estudos de Viabilidade , Humanos
15.
J Biol Chem ; 295(46): 15636-15649, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32883810

RESUMO

Clear-cell renal cell carcinoma (ccRCC), the most common subtype of renal cancer, has a poor clinical outcome. A hallmark of ccRCC is genetic loss-of-function of VHL (von Hippel-Lindau) that leads to a highly vascularized tumor microenvironment. Although many ccRCC patients initially respond to antiangiogenic therapies, virtually all develop progressive, drug-refractory disease. Given the role of dysregulated expressions of cytoskeletal and cytoskeleton-regulatory proteins in tumor progression, we performed analyses of The Cancer Genome Atlas (TCGA) transcriptome data for different classes of actin-binding proteins to demonstrate that increased mRNA expression of profilin1 (Pfn1), Arp3, cofilin1, Ena/VASP, and CapZ, is an indicator of poor prognosis in ccRCC. Focusing further on Pfn1, we performed immunohistochemistry-based classification of Pfn1 staining in tissue microarrays, which indicated Pfn1 positivity in both tumor and stromal cells; however, the vast majority of ccRCC tumors tend to be Pfn1-positive selectively in stromal cells only. This finding is further supported by evidence for dramatic transcriptional up-regulation of Pfn1 in tumor-associated vascular endothelial cells in the clinical specimens of ccRCC. In vitro studies support the importance of Pfn1 in proliferation and migration of RCC cells and in soluble Pfn1's involvement in vascular endothelial cell tumor cell cross-talk. Furthermore, proof-of-concept studies demonstrate that treatment with a novel computationally designed Pfn1-actin interaction inhibitor identified herein reduces proliferation and migration of RCC cells in vitro and RCC tumor growth in vivo Based on these findings, we propose a potentiating role for Pfn1 in promoting tumor cell aggressiveness in the setting of ccRCC.


Assuntos
Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Profilinas/metabolismo , Actinas/antagonistas & inibidores , Actinas/metabolismo , Animais , Proteína de Capeamento de Actina CapZ/genética , Proteína de Capeamento de Actina CapZ/metabolismo , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cofilina 1/genética , Cofilina 1/metabolismo , Bases de Dados Genéticas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Neoplasias Renais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Profilinas/antagonistas & inibidores , Profilinas/genética , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Microambiente Tumoral , Regulação para Cima
16.
Urol Oncol ; 38(9): 736.e1-736.e10, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32674955

RESUMO

OBJECTIVE: ERG rearrangements are frequent and early events in prostate cancer. The functional role of rearranged ERG, however, is still incompletely understood. ERG rearrangements are maintained during prostate cancer progression suggesting that they may confer a selective advantage. The molecular basis of this notion is the subject of this study. METHODS: A variety of immunological methods were used to characterize the effects of rearranged ERG on p53. Consequences of an overexpression of N-terminally deleted ERG on p53 function were interrogated by measuring apoptosis and cellular senescence in the presence or absence of exogenous DNA damage. Effects of N-terminally deleted ERG on the transactivation function of p53 were analyzed by qRT-PCR. RESULTS: We show that overexpression of ERG leads to an increased basal level of DNA damage and a stabilization of p53 that involves a sequestration of its E3 ubiquitin ligase, MDM2, into nucleoli. A higher p53 expression was also observed in vivo in an ERG-overexpressing prostatic intraepithelial neoplasia mouse model. The correlation between ERG and p53 expression was corroborated in 163 patients with prostate cancer. ERG overexpression was found to inhibit both apoptosis and cellular senescence induced by exogenous DNA damage. Mechanistically, this protective effect of ERG involved an abrogation of the DNA damage-induced expression of p53 target genes. CONCLUSIONS: By protecting tumor cells from the antiproliferative consequences of genotoxic stress, ERG may allow the survival and proliferation of genomically unstable tumor cells. Targeting ERG may therefore represent a promising strategy to suppress such adverse features during prostate cancer progression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteína Supressora de Tumor p53/genética , Idoso , Animais , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Regulador Transcricional ERG/genética , Células Tumorais Cultivadas
17.
Urol Oncol ; 38(7): 637.e17-637.e27, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32280037

RESUMO

BACKGROUND: Defects in DNA damage repair genes characterize a subset of men with prostate cancer and provide an attractive opportunity for precision oncology approaches. The prevalence of such perturbations in newly diagnosed, treatment-naïve patients with a high risk for lethal disease outcome, however, has not been sufficiently explored. PATIENTS AND METHODS: Prostate cancer specimens from 67 men with newly diagnosed early onset, localized high-risk/locally advanced or metastatic prostate cancer were included in this prospective pilot study. Tumor samples, including 30 prostate biopsies, were analyzed by targeted next generation sequencing using a formalin-fixed, paraffin-embedded tissue-optimized 37 DNA damage repair and checkpoint gene panel. RESULTS: The drop-out rate due to an insufficient quantity of DNA was 4.5% (3 of 67 patients). In the remaining 64 patients, the rate of pathogenic DNA damage repair gene mutations was 26.6%. The highest rate of pathogenic DNA damage repair and checkpoint gene mutations was found in men with treatment-naïve metastatic prostate cancer (38.9%). In addition, a high number of likely pathogenic mutations and gene deletions were detected. Altogether, one or more pathogenic mutation, likely pathogenic mutation or gene deletion affected 43 of 64 patients (67.2%) including 29 of 36 patients (80.6%) with treatment-naïve metastatic prostate cancer. Men with metastatic prostate cancer showed a high prevalence of alterations in TP53 (36.1%). CONCLUSIONS: This pilot study demonstrates the feasibility, performance and clinical relevance of somatic targeted next generation sequencing using a unique 37 DNA damage repair and checkpoint gene panel under routine conditions. Our results indicate that this approach can detect actionable DNA repair gene alterations, uncommon mutations as well as mutations associated with therapy resistance in a high number of patients, in particular patients with treatment-naïve metastatic prostate cancer.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Metástase Neoplásica/genética , Neoplasias da Próstata/genética , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Prevalência , Estudos Prospectivos , Neoplasias da Próstata/patologia , Resultado do Tratamento
18.
Sci Rep ; 10(1): 5178, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198455

RESUMO

The majority of gastrointestinal stromal tumors (GISTs) are driven by oncogenic KIT signaling and can therefore be effectively treated with the tyrosine kinase inhibitor (TKI) imatinib mesylate. However, most GISTs develop imatinib resistance through secondary KIT mutations. The type of resistance mutation determines sensitivity to approved second-/third-line TKIs but shows high inter- and intratumoral heterogeneity. Therefore, therapeutic strategies that target KIT independently of the mutational status are intriguing. Inhibiting the ubiquitin-proteasome machinery with bortezomib is effective in GIST cells through a dual mechanism of KIT transcriptional downregulation and upregulation of the pro-apoptotic histone H2AX but clinically problematic due to the drug's adverse effects. We therefore tested second-generation inhibitors of the 20S proteasome (delanzomib, carfilzomib and ixazomib) with better pharmacologic profiles as well as compounds targeting regulators of ubiquitination (b-AP15, MLN4924) for their effectiveness and mechanism of action in GIST. All three 20S proteasome inhibitors were highly effective in vitro and in vivo, including in imatinib-resistant models. In contrast, b-AP15 and MLN4924 were only effective at high concentrations or had mostly cytostatic effects, respectively. Our results confirm 20S proteasome inhibitors as promising strategy to overcome TKI resistance in GIST, while highlighting the complexity of the ubiquitin-proteasome machinery as a therapeutic target.


Assuntos
Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Boro/farmacologia , Ácidos Borônicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Mesilato de Imatinib/farmacologia , Masculino , Camundongos , Camundongos Nus , Oligopeptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Transdução de Sinais/efeitos dos fármacos , Treonina/análogos & derivados , Treonina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Immunol Immunother ; 68(10): 1621-1633, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31549213

RESUMO

Defects in DNA damage repair caused by mutations in BRCA1/2, ATM or other genes have been shown to play an important role in the development and progression of prostate cancer. The influence of such mutations on anti-tumor immunity in prostate cancer, however, is largely unknown. To better understand the correlation between BRCA1/2 mutations and the immune phenotype in prostate cancer, we characterized the immune infiltrate of eight BRCA2-mutated tumors in comparison with eight BRCA1/2 wild-type patients by T-cell receptor sequencing and immunohistochemistry for CD45, CD4, CD8, FOXP3, and CD163. In addition, we analyzed seven prostate cancer biopsies that were either BRCA2 or ATM-mutated in comparison with wild-type tumors. Whereas in BRCA1/2 wild-type tumors, immune cells were found predominantly extratumorally, most BRCA2-mutated tumors including one biopsy showed a significantly increased intratumoral immune cell infiltration. The ratio of intratumoral to extratumoral immune cells was considerably higher in BRCA2-mutated tumors for all markers and reached statistical significance for CD4 (p = 0.007), CD8 (p = 0.006), and FOXP3 (p = 0.001). However, the intratumoral CD8 to FOXP3 ratio showed a trend to be lower in BRCA2-mutated tumors suggesting a more suppressed tumor immune microenvironment. Our findings provide a rationale for the future use of immune oncological approaches in BRCA2-mutated prostate cancer and may encourage efforts to target immunosuppressive T-cell populations to prime tumors for immunotherapy.


Assuntos
Genes BRCA2 , Mutação , Neoplasias da Próstata/imunologia , Antígenos CD8/análise , Fatores de Transcrição Forkhead/análise , Humanos , Masculino , Fenótipo , Neoplasias da Próstata/genética , Linfócitos T/imunologia , Microambiente Tumoral
20.
Clin Sarcoma Res ; 9: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867899

RESUMO

BACKGROUND: Activating mutations of the receptor tyrosine kinase KIT are early events in the development of most gastrointestinal stromal tumors (GISTs). Although GISTs generally remain dependent on oncogenic KIT during tumor progression, KIT mutations alone are insufficient to induce malignant behavior. This is evidenced by KIT-mutant micro-GISTs, which are present in up to one-third of normal individuals, but virtually never progress to malignancy. METHODS: We performed whole exome sequencing on 29 tumors obtained from 21 patients with high grade or metastatic KIT-mutant GIST (discovery set). We further validated the frequency and potential prognostic significance of aberrations in CDKN2A/B, RB1, and TP53 in an independent series of 71 patients with primary GIST (validation set). RESULTS: Using whole exome sequencing we found significant enrichment of genomic aberrations in cell cycle-associated genes (Fisher's Exact p = 0.001), most commonly affecting CDKN2A/B, RB1, and TP53 in our discovery set. We found a low mutational tumor burden in these 29 advanced GIST samples, a finding with significant implications for the development of immunotherapy for GIST. In addition, we found mutation of spliceosome genes in a minority of cases, implicating dysregulation of splicing as a potential cancer promoting mechanism in GIST. We next assessed the prognostic significance of CDKN2A, RB1 or TP53 mutation/copy loss in an independent cohort of 71 patients with primary GIST. Genetic events (mutation, deletion, and/or LOH) involving at least one of the three genes examined were found in 17% of the very low-risk, 36% of the low-risk, 42% of the intermediate risk, 67% of the high-risk/low mitotic-count, and in 86% of the high-risk/high mitotic-count group. The presence of cell cycle-related events was associated with a significantly shorter relapse-free survival (median 67 months versus not reached; p < 0.0001) and overall survival (Log Rank, p = 0.042). CONCLUSION: Our results demonstrate that genomic events targeting cell cycle-related genes are associated with GIST progression to malignant disease. Based on this data, we propose a model for molecular pathogenesis of malignant GIST.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA