Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 18(12): 2328-2343, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37949072

RESUMO

Sus scrofa domesticus (pig) has served as a superb large mammalian model for biomedical studies because of its comparable physiology and organ size to humans. The derivation of transgene-free porcine induced pluripotent stem cells (PiPSCs) will, therefore, benefit the development of porcine-specific models for regenerative biology and its medical applications. In the past, this effort has been hampered by a lack of understanding of the signaling milieu that stabilizes the porcine pluripotent state in vitro. Here, we report that transgene-free PiPSCs can be efficiently derived from porcine fibroblasts by episomal vectors along with microRNA-302/367 using optimized protocols tailored for this species. PiPSCs can be differentiated into derivatives representing the primary germ layers in vitro and can form teratomas in immunocompromised mice. Furthermore, the transgene-free PiPSCs preserve intrinsic species-specific developmental timing in culture, known as developmental allochrony. This is demonstrated by establishing a porcine in vitro segmentation clock model that, for the first time, displays a specific periodicity at ∼3.7 h, a timescale recapitulating in vivo porcine somitogenesis. We conclude that the transgene-free PiPSCs can serve as a powerful tool for modeling development and disease and developing transplantation strategies. We also anticipate that they will provide insights into conserved and unique features on the regulations of mammalian pluripotency and developmental timing mechanisms.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Suínos , Reprogramação Celular , Diferenciação Celular , Transgenes , Mamíferos
2.
Stem Cell Reports ; 18(2): 585-596, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36638788

RESUMO

Macrophages armed with chimeric antigen receptors (CARs) provide a potent new option for treating solid tumors. However, genetic engineering and scalable production of somatic macrophages remains significant challenges. Here, we used CRISPR-Cas9 gene editing methods to integrate an anti-GD2 CAR into the AAVS1 locus of human pluripotent stem cells (hPSCs). We then established a serum- and feeder-free differentiation protocol for generating CAR macrophages (CAR-Ms) through arterial endothelial-to-hematopoietic transition (EHT). CAR-M produced by this method displayed a potent cytotoxic activity against GD2-expressing neuroblastoma and melanoma in vitro and neuroblastoma in vivo. This study provides a new platform for the efficient generation of off-the-shelf CAR-Ms for antitumor immunotherapy.


Assuntos
Melanoma , Neuroblastoma , Células-Tronco Pluripotentes , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia/métodos , Células-Tronco Pluripotentes/patologia , Melanoma/terapia , Neuroblastoma/terapia , Neuroblastoma/patologia , Macrófagos/patologia
3.
Dev Biol ; 423(2): 101-110, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28179190

RESUMO

How species-specific developmental timing is controlled is largely unknown. By following human embryonic stem (ES) cell and mouse epiblast stem (EpiS) cell differentiation through detailed RNA-sequencing time courses, here we show that pluripotent stem cells closely retain in vivo species-specific developmental timing in vitro. In identical neural differentiation conditions in vitro, gene expression profiles are accelerated in mouse EpiS cells compared to human ES cells with relative rates of differentiation closely reflecting the rates of progression through the Carnegie stages in utero. Dynamic Time Warping analysis identified 3389 genes that were regulated more quickly in mouse EpiS cells and identified none that were regulated more quickly in human ES cells. Interestingly, we also find that human ES cells differentiated in teratomas maintain the same rate of differentiation observed in vitro in spite of being grown in a mouse host. These results suggest the existence of a cell autonomous, species-specific developmental clock that pluripotent stem cells maintain even out of context of an intact embryo.


Assuntos
Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Células-Tronco Embrionárias/citologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos SCID , Neurônios/citologia , Especificidade da Espécie , Teratoma/patologia , Fatores de Tempo
4.
Stem Cell Reports ; 4(2): 171-80, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25601207

RESUMO

In this study, we demonstrate a newly derived mouse model that supports engraftment of human hematopoietic stem cells (HSCs) in the absence of irradiation. We cross the NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ (NSG) strain with the C57BL/6J-Kit(W-41J)/J (C57BL/6.Kit(W41)) strain and engraft, without irradiation, the resulting NBSGW strain with human cord blood CD34+ cells. At 12-weeks postengraftment in NBSGW mice, we observe human cell chimerism in marrow (97% ± 0.4%), peripheral blood (61% ± 2%), and spleen (94% ± 2%) at levels observed with irradiation in NSG mice. We also detected a significant number of glycophorin-A-positive expressing cells in the developing NBSGW marrow. Further, the observed levels of human hematopoietic chimerism mimic those reported for both irradiated NSG and NSG-transgenic strains. This mouse model permits HSC engraftment while avoiding the complicating hematopoietic, gastrointestinal, and neurological side effects associated with irradiation and allows investigators without access to radiation to pursue engraftment studies with human HSCs.


Assuntos
Diferenciação Celular , Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Subunidade gama Comum de Receptores de Interleucina/genética , Proteínas Proto-Oncogênicas c-kit/genética , Animais , Linhagem da Célula , Genótipo , Xenoenxertos , Humanos , Imunofenotipagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fenótipo , Fatores de Tempo , Quimeras de Transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA