Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 249: 112371, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37738699

RESUMO

A series of dimethylgallium quinolinolate [GaMe2L] (L = 5-chloroquinolinolate, 5, 7-dichloroquinolinolate, 5, 7-dibromoquinolinolate or 5, 7-doiodoquinolinolate) complexes, shown previously to be active toward the Leishmania parasite, have been studied for their antibacterial activity toward a reference and drug resistant strain of Klebsiella pneumoniae (KP). The assays were conducted in standard iron-rich LB media and in the iron depleted RPMI and RPMI-HS media to better understand the effect of Fe concentration on the activity of the Ga complexes. In LB broth the parent quinolinols and the gallium complexes were inactive up to the highest concentration tested, 100 µM. In the more physiologically relevant 'iron-poor' RPMI-HS media the quinolonols remained inactive, however, the gallium complexes showed exceptional activity in the range 48-195 nM. Only in RPMI without any added HS did both the quinolinols and the gallium complexes show good activity. The significant differences in activity across the various media types suggest that the unnaturally high iron content of conventional LB media may provide false negative results for potentially potent Ga therapeutics. A protein binding assay on the organometallic gallium complexes showed a much slower uptake of Ga by Fe-binding proteins than is typically observed for gallium salts. This indicates that their greater lipophilicity and greater hydrolytic stability could account for their increased biological activity in RPMI-HS media.


Assuntos
Gálio , Hidroxiquinolinas , Gálio/farmacologia , Gálio/química , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/química , Ferro/metabolismo , Hidroxiquinolinas/farmacologia
2.
Anal Chem ; 95(8): 3986-3995, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787387

RESUMO

The prevalence of neglected tropical diseases (NTDs) is advancing at an alarming rate. The NTD leishmaniasis is now endemic in over 90 tropical and sub-tropical low socioeconomic countries. Current diagnosis for this disease involves serological assessment of infected tissue by either light microscopy, antibody tests, or culturing with in vitro or in vivo animal inoculation. Furthermore, co-infection by other pathogens can make it difficult to accurately determine Leishmania infection with light microscopy. Herein, for the first time, we demonstrate the potential of combining synchrotron Fourier-transform infrared (FTIR) microspectroscopy with powerful discrimination tools, such as partial least squares-discriminant analysis (PLS-DA), support vector machine-discriminant analysis (SVM-DA), and k-nearest neighbors (KNN), to characterize the parasitic forms of Leishmania major both isolated and within infected macrophages. For measurements performed on functional infected and uninfected macrophages in physiological solutions, the sensitivities from PLS-DA, SVM-DA, and KNN classification methods were found to be 0.923, 0.981, and 0.989, while the specificities were 0.897, 1.00, and 0.975, respectively. Cross-validated PLS-DA models on live amastigotes and promastigotes showed a sensitivity and specificity of 0.98 in the lipid region, while a specificity and sensitivity of 1.00 was achieved in the fingerprint region. The study demonstrates the potential of the FTIR technique to identify unique diagnostic bands and utilize them to generate machine learning models to predict Leishmania infection. For the first time, we examine the potential of infrared spectroscopy to study the molecular structure of parasitic forms in their native aqueous functional state, laying the groundwork for future clinical studies using more portable devices.


Assuntos
Leishmania major , Leishmaniose , Animais , Síncrotrons , Espectrofotometria Infravermelho , Leishmaniose/diagnóstico , Macrófagos/parasitologia
3.
J Inorg Biochem ; 221: 111470, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33971522

RESUMO

Low molecular weight thiols including trypanothione and glutathione play an important function in the cellular growth, maintenance and reduction of oxidative stress in Leishmania species. In particular, parasite specific trypanothione has been established as a prime target for new anti-leishmania drugs. Previous studies into the interaction of the front-line Sb(V) based anti-leishmanial drug meglumine antimoniate with glutathione, have demonstrated that a reduction pathway may be responsible for its effective and selective nature. The new suite of organometallic complexes, of general formula [MAr3(O2CR)2] (M = Sb or Bi) have been shown to have potential as new selective drug candidates. However, their behaviour towards the critical thiols glutathione and trypanothione is still largely unknown. Using NMR spectroscopy and mass spectrometry we have examined the interaction of the analogous Sb(V) and Bi(V) organometallic complexes, [SbPh3(O2CCH2(C6H4CH3))2] S1 and [BiPh3(O2CCH2(C6H4CH3))2] B1, with the trifluoroacetate (TFA) salt of trypanothione and L-glutathione. In the presence of trypanothione or glutathione at the clinically relevant pH of 4-5 for Leishmania amastigotes, both complexes undergo facile and rapid reduction, with no discernible difference. However, at a higher pH (6-7), the complexes behave quite differently towards glutathione. The Bi(V) complex is again reduced rapidly but the Sb(V) complex undergoes slow reduction over 8 h (t1/2 = 54 min.) These results give the first insights into why the highly oxidising Bi(V) complexes display low selectivity in their cytotoxicity towards leishmanial and mammalian cells, while the Sb(V) complexes show good selectivity.


Assuntos
Complexos de Coordenação/química , Glutationa/análogos & derivados , Glutationa/química , Espermidina/análogos & derivados , Tripanossomicidas/química , Antimônio/química , Bismuto/química , Meia-Vida , Oxirredução , Espermidina/química
4.
J Inorg Biochem ; 203: 110932, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31790875

RESUMO

A series of ten cyclometallates and two µ2-peroxo bridged tris-aryl Sb(V) complexes derived from R/S-mandelic acid (= R/S-ManH2) were synthesised and characterised. As confirmed by X-ray crystallography the complexes 1Sr/s, [Sb(o-tol)3(man)], 2Sr/s, [Sb(m-tol)3(man)], 4Sr/s, [Sb(o-PhOMe)3(man)], 5Sr/s, [Sb(Mes)3(man)] and 6Sr/s, [Sb(p-tert-BuPh)3(man)] are all cyclometallates. Complexes 3Sr/s, [(Sb(p-tol)3(manH)2O2], contain a bridging O22- anion in the solid-state but convert to the cyclometallates in DMSO solution with concomitant release of H2O2 and formation of complexes [Sb(p-tol)3(man)], 3Sr'/s'. All complexes underwent initial testing against both human fibroblasts and L. major V121 promastigotes. IC50 values were found to range from 2.07 (6Sr) to >100 (4Sr) µM and 0.21 (5Ss) to >100 (4Ss) µM for fibroblasts and parasites respectively. Two of the complexes were found to be ineffective, displaying no toxicity (4S/r). Despite the degree of mammalian toxicity, the selectivity of most complexes exceeded an SI of three and so were assessed for their anti-amastigote activity. Excellent anti-amastigote activity was observed for complexes at both 10 µM and 5 µM, with percentage infection value ranging from 0.15-3.00% for those tested at 10 µM and 0.25-2.50% for those at 5 µM.


Assuntos
Antimônio/química , Complexos de Coordenação/síntese química , Ácidos Mandélicos/química , Compostos Organometálicos/síntese química , Tripanossomicidas/síntese química , Linhagem Celular , Complexos de Coordenação/toxicidade , Fibroblastos/efeitos dos fármacos , Humanos , Leishmania major/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Compostos Organometálicos/toxicidade , Tripanossomicidas/toxicidade
5.
Eur J Med Chem ; 186: 111895, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31771825

RESUMO

A series of eight alkyl gallium complexes of general formulae [GaMe2(L)] and [Ga(Me)2L] have been synthesised, characterised and their antimicrobial activity against bacteria, cancer cells and Leishmania assessed. All eight complexes are novel, with the solid-state structures of all complexes successfully authenticated by single crystal X-ray diffraction. The dimethyl complexes all adopt a four-coordinate tetrahedral confirmation, while the monomethyl complexes are five-coordinate trigonal bipyramidal. All complexes were screened for their anti-bacterial activity either by solution state diffusion, or a solid-state stab test. The five soluble complexes underwent testing against two differing mammalian cell controls, with excellent selectivity observed against COS-7 cells, with an IC50 range of 88.5 µM to ≥100 µM. Each soluble complex was also tested for their anti-cancer capabilities, with no significant activity observed. Excellent activity was exhibited against the protozoan parasite Leishmania major (strain: V121) in both the promastigote and amastigote forms, with IC50 values ranging from 1.11 µM-13.4 µM for their anti-promastigote activity and % infection values of 3.5% ± 0.65-11.5% ± 0.65 for the more clinically relevant amastigote. Selectivity indices for each were found to be in the ranges of 6.61-64.7, with significant selectivity noted for two of the complexes. At minimum, the gallium complexes show a 3-fold enhancement in activity towards the Leishmaniaamastigotes over the parent quinolinols alone.


Assuntos
Antiprotozoários/farmacologia , Complexos de Coordenação/farmacologia , Gálio/farmacologia , Hidroxiquinolinas/farmacologia , Leishmania major/efeitos dos fármacos , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Células COS , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Gálio/química , Células HeLa , Humanos , Hidroxiquinolinas/química , Leishmania major/metabolismo , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Espécies Reativas de Oxigênio/análise , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA