Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
High Alt Med Biol ; 22(3): 249-262, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34152867

RESUMO

Stewart, Glenn M., Troy J. Cross, Michael J. Joyner, Steven C. Chase, Timothy Curry, Josh Lehrer-Graiwer, Kobina Dufu, Nicholas E. Vlahakis, and Bruce D. Johnson. Impact of pharmacologically left shifting the oxygen-hemoglobin dissociation curve on arterial blood gases and pulmonary gas exchange during maximal exercise in hypoxia. High Alt Med Biol. 22:249-262, 2021. Introduction: Physiological and pathological conditions, which reduce the loading of oxygen onto hemoglobin (Hb), can impair exercise capacity and cause debilitating symptoms. Accordingly, this study examined the impact of pharmacologically left shifting the oxygen-hemoglobin dissociation curve (ODC) on arterial oxygen saturation (SaO2) and exercise capacity. Methods: Eight healthy subjects completed a maximal incremental exercise test in hypoxia (FIO2: 0.125) and normoxia (FIO2: 0.21) before (Day 1) and after (Day 15) daily ingestion of 900 mg of voxelotor (an oxygen/Hb affinity modulator). Pulmonary gas exchange and arterial blood gases were assessed throughout exercise and at peak. Data for a 1,500 mg daily drug dose are reported in a limited cohort (n = 3). Results: Fourteen days of drug administration left shifted the ODC (p50 measured under standard conditions, Day 1: 28.0 ± 2.1 mmHg vs. Day 15: 26.1 ± 1.8 mmHg, p < 0.05). Throughout incremental exercise in hypoxia, SaO2 was systematically higher after drug (peak exercise SaO2 on Day 1: 71 ± 2 vs. Day 15: 81% ± 2%, p < 0.001), whereas oxygen extraction (Ca-vO2 diff) and consumption (VO2) were similar (peak exercise Ca-vO2 diff on Day 1: 11.5 ± 1.7 vs. Day 15: 11.0 ± 1.8 ml/100 ml blood, p = 0.417; peak VO2 on Day 1: 2.59 ± 0.39 vs. Day 15: 2.47 ± 0.43 l/min, p = 0.127). Throughout incremental exercise in normoxia, SaO2 was systematically higher after drug, whereas peak VO2 was reduced (peak exercise SaO2 on Day 1: 93.9 ± 1.8 vs. Day 15: 95.8% ± 1.0%, p = 0.008; peak VO2 on Day 1: 3.62 ± 0.55 vs. Day 15: 3.26 ± 52 l/min, p = 0.001). Conclusion: Pharmacologically increasing the affinity of Hb for oxygen improved SaO2 during hypoxia without impacting exercise capacity; however, left shifting the ODC in healthy individuals appears detrimental to exercise capacity in normoxia. Left shifting the ODC to different magnitudes and under more chronic forms of hypoxia warrants further study.


Assuntos
Oxigênio , Troca Gasosa Pulmonar , Teste de Esforço , Hemoglobinas , Humanos , Hipóxia , Consumo de Oxigênio
2.
Physiol Rep ; 4(17)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27624688

RESUMO

Although exertional dyspnea and worsening hypoxia are hallmark clinical features of idiopathic pulmonary fibrosis (IPF), no drug currently available could treat them. GBT1118 is a novel orally bioavailable small molecule that binds to hemoglobin and produces a concentration-dependent left shift of the oxygen-hemoglobin dissociation curve with subsequent increase in hemoglobin-oxygen affinity and arterial oxygen loading. To assess whether pharmacological modification of hemoglobin-oxygen affinity could ameliorate hypoxemia associated with lung fibrosis, we evaluated GBT1118 in a bleomycin-induced mouse model of hypoxemia and fibrosis. After pulmonary fibrosis and hypoxemia were induced, GBT1118 was administered for eight consecutive days. Hypoxemia was determined by monitoring arterial oxygen saturation, while the severity of pulmonary fibrosis was assessed by histopathological evaluation and determination of collagen and leukocyte levels in bronchoalveolar lavage fluid. We found that hemoglobin modification by GBT1118 had strong antihypoxemic therapeutic effects with improved arterial oxygen saturation to near normal level. Moreover, GBT1118 treatment significantly attenuated bleomycin-induced lung fibrosis, collagen accumulation, body weight loss, and leukocyte infiltration. This study is the first to suggest the beneficial effects of hemoglobin modification in fibrotic lungs and offers a promising and novel therapeutic strategy for the treatment of hypoxemia associated with chronic fibrotic lung disorders in human, including IPF.


Assuntos
Benzaldeídos/administração & dosagem , Bleomicina/administração & dosagem , Hipóxia/induzido quimicamente , Fibrose Pulmonar Idiopática/induzido quimicamente , Niacinamida/análogos & derivados , Oxigênio/metabolismo , Oxiemoglobinas/efeitos dos fármacos , Administração Oral , Animais , Benzaldeídos/metabolismo , Benzaldeídos/farmacocinética , Benzaldeídos/farmacologia , Bleomicina/efeitos adversos , Bleomicina/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Colágeno/efeitos dos fármacos , Colágeno/metabolismo , Dispneia/diagnóstico , Dispneia/etiologia , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Niacinamida/administração & dosagem , Niacinamida/metabolismo , Niacinamida/farmacocinética , Niacinamida/farmacologia , Oxigênio/sangue , Oxiemoglobinas/metabolismo , Distribuição Aleatória
3.
PLoS One ; 7(8): e43804, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928037

RESUMO

The conserved TREX complex, which contains UAP56, Aly, CIP29, and the multi-subunit THO complex, functions in mRNA export. Recently, several putative new components of the human TREX complex were identified by mass spectrometry. Here, we investigated the function of two of these, PDIP3 and ZC11A. Our data indicate that both of these proteins are components of a common TREX complex and function in mRNA export. Recently, we found that both CIP29 and Aly associate with the DEAD box helicase UAP56 and with the TREX complex in an ATP-dependent manner. We now show that this is also the case for PDIP3 and ZC11A. Thus, together with previous work, our data indicate that the TREX complex participates in multiple ATP-dependent interactions.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Transporte de RNA , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/química , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Dedos de Zinco
4.
Genes Dev ; 24(18): 2043-53, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20844015

RESUMO

The conserved TREX mRNA export complex is known to contain UAP56, Aly, Tex1, and the THO complex. Here, we carried out proteomic analysis of immunopurified human TREX complex and identified the protein CIP29 as the only new component with a clear yeast relative (known as Tho1). Tho1 is known to function in mRNA export, and we provide evidence that CIP29 likewise functions in this process. Like the known TREX components, a portion of CIP29 localizes in nuclear speckle domains, and its efficient recruitment to mRNA is both splicing- and cap-dependent. We show that UAP56 mediates an ATP-dependent interaction between the THO complex and both CIP29 and Aly, indicating that TREX assembly is ATP-dependent. Using recombinant proteins expressed in Escherichia coli, we show that UAP56, Aly, and CIP29 form an ATP-dependent trimeric complex, and UAP56 bridges the interaction between CIP29 and Aly. We conclude that the interaction of two conserved export proteins, CIP29 and Aly, with UAP56 is strictly regulated by ATP during assembly of the TREX complex.


Assuntos
Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células COS , Proteínas de Ciclo Celular/metabolismo , Chlorocebus aethiops , RNA Helicases DEAD-box/genética , Exodesoxirribonucleases/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/genética , Processamento Pós-Transcricional do RNA/fisiologia , Transporte de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA