Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(9): e1012458, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39241059

RESUMO

Uropathogenic Escherichia coli (UPEC) can undergo extensive filamentation in the host during acute urinary tract infections (UTIs). It has been hypothesised that this morphological plasticity allows bacteria to avoid host immune responses such as macrophage engulfment. However, it is still unclear what properties of filaments are important in macrophage-bacteria interactions. The aim of this work was to investigate the contribution of bacterial biophysical parameters, such as cell size and shape, and physiological parameters, such as cell surface and the environment, to macrophage engulfment efficiency. Viable, reversible filaments of known lengths and volumes were produced in the UPEC strain UTI89 using a variety of methods, including exposure to cell-wall targeting antibiotics, genetic manipulation and isolation from an in vitro human bladder cell model. Quantification of the engulfment ability of macrophages using gentamicin-protection assays and fluorescence microscopy demonstrated that the ability of filaments to avoid macrophage engulfment is dependent on a combination of size (length and volume), shape, cell surface and external environmental factors. UTI89 filamentation and macrophage engulfment efficiency were also found to occur independently of the SOS-inducible filamentation genes, sulA and ymfM in both in vivo and in vitro models of infection. Compared to filaments formed via antibiotic inhibition of division, the infection-derived filaments were preferentially targeted by macrophages. With several strains of UPEC now resistant to current antibiotics, our work identifies the importance of bacterial physiological and morphological states during infection.


Assuntos
Infecções por Escherichia coli , Macrófagos , Infecções Urinárias , Escherichia coli Uropatogênica , Macrófagos/microbiologia , Macrófagos/imunologia , Humanos , Infecções Urinárias/microbiologia , Infecções Urinárias/imunologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/imunologia , Fagocitose , Camundongos , Animais
2.
mSystems ; : e0038724, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287381

RESUMO

Uropathogenic Escherichia coli (UPEC) requires an adaptable physiology to survive the wide range of environments experienced in the host, including gut and urinary tract surfaces. To identify UPEC genes required during intracellular infection, we developed a transposon-directed insertion-site sequencing approach for cellular infection models and searched for genes in a library of ~20,000 UTI89 transposon-insertion mutants that are specifically required at the distinct stages of infection of cultured bladder epithelial cells. Some of the bacterial functional requirements apparent in host bladder cell growth overlapped with those for M9-glycerol, notably nutrient utilization, polysaccharide and macromolecule precursor biosynthesis, and cell envelope stress tolerance. Two genes implicated in the intracellular bladder cell infection stage were confirmed through independent gene deletion studies: neuC (sialic acid capsule biosynthesis) and hisF (histidine biosynthesis). Distinct sets of UPEC genes were also implicated in bacterial dispersal, where UPEC erupts from bladder cells in highly filamentous or motile forms upon exposure to human urine, and during recovery from infection in a rich medium. We confirm that the dedD gene linked to septal peptidoglycan remodeling is required during UPEC dispersal from human bladder cells and may help stabilize cell division or the cell wall during envelope stress created by host cells. Our findings support a view that the host intracellular environment and infection cycle are multi-nutrient limited and create stress that demands an array of biosynthetic, cell envelope integrity, and biofilm-related functions of UPEC. IMPORTANCE: Urinary tract infections (UTIs) are one of the most frequent infections worldwide. Uropathogenic Escherichia coli (UPEC), which accounts for ~80% of UTIs, must rapidly adapt to highly variable host environments, such as the gut, bladder sub-surface, and urine. In this study, we searched for UPEC genes required for bacterial growth and survival throughout the cellular infection cycle. Genes required for de novo synthesis of biomolecules and cell envelope integrity appeared to be important, and other genes were also implicated in bacterial dispersal and recovery from infection of cultured bladder cells. With further studies of individual gene function, their potential as therapeutic targets may be realized. This study expands knowledge of the UTI cycle and establishes an approach to genome-wide functional analyses of stage-resolved microbial infections.

3.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38794885

RESUMO

Urinary tract infection (UTI), one of the most common bacterial infections worldwide, is a typical example of an infection that is often polymicrobial in nature. While the overall infection course is known on a macroscale, bacterial behavior is not fully understood at the cellular level and bacterial pathophysiology during multispecies infection is not well characterized. Here, using clinically relevant bacteria, human epithelial bladder cells and human urine, we establish co-infection models combined with high resolution imaging to compare single- and multi-species bladder cell invasion events in three common uropathogens: uropathogenic Escherichia coli (UPEC), Klebsiella pneumoniae and Enterococcus faecalis. While all three species invaded the bladder cells, under flow conditions the Gram-positive E. faecalis was significantly less invasive compared to the Gram-negative UPEC and K. pneumoniae. When introduced simultaneously during an infection experiment, all three bacterial species sometimes invaded the same bladder cell, at differing frequencies suggesting complex interactions between bacterial species and bladder cells. Inside host cells, we observed encasement of E. faecalis colonies specifically by UPEC. During subsequent dispersal from the host cells, only the Gram-negative bacteria underwent infection-related filamentation (IRF). Taken together, our data suggest that bacterial multispecies invasions of single bladder cells are frequent and support earlier studies showing intraspecies cooperation on a biochemical level during UTI.


Assuntos
Enterococcus faecalis , Células Epiteliais , Klebsiella pneumoniae , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Infecções Urinárias/microbiologia , Enterococcus faecalis/fisiologia , Células Epiteliais/microbiologia , Escherichia coli Uropatogênica/fisiologia , Klebsiella pneumoniae/fisiologia , Bexiga Urinária/microbiologia , Bexiga Urinária/citologia , Coinfecção/microbiologia , Linhagem Celular , Interações Hospedeiro-Patógeno
4.
Res Microbiol ; 172(6): 103852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34246779

RESUMO

In contrast to mammalian cells, bacteria such as Escherichia coli have been shown to display tolerance towards the neurotoxin ß-methylamino-l-alanine (BMAA) suggesting that these prokaryotes possess a way to metabolise BMAA or its products, resulting in their export, degradation, or detoxification. Single gene deletion mutants of E. coli K-12 with inactivated amino acid biosynthesis pathways were treated with 500 µg/ml BMAA and the resulting growth was monitored. Wild type E. coli and most of the gene deletion mutants displayed unaltered growth in the presence of BMAA over 12 h. Conversely, deletion of genes in the cysteine biosynthesis pathway, cysE, cysK or cysM resulted in a BMAA dose-dependent growth delay in minimal medium. Through further studies of the ΔcysE strain, we observed increased susceptibility to oxidative stress from H2O2 in minimal medium, and disruptions in glutathione levels and oxidation state. The cysteine biosynthesis pathway is therefore linked to the tolerance of BMAA and oxidative stress in E. coli, which potentially represents a mechanism of BMAA detoxification.


Assuntos
Diamino Aminoácidos/farmacologia , Toxinas de Cianobactérias/farmacologia , Cisteína/biossíntese , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Diamino Aminoácidos/metabolismo , Diamino Aminoácidos/toxicidade , Meios de Cultura , Toxinas de Cianobactérias/metabolismo , Toxinas de Cianobactérias/toxicidade , Cisteína Sintase/genética , Tolerância a Medicamentos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Deleção de Genes , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Redes e Vias Metabólicas , Oxirredução , Estresse Oxidativo , Serina O-Acetiltransferase/genética
5.
PLoS Pathog ; 17(4): e1009186, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826679

RESUMO

Pathogenic mycobacteria actively dysregulate protective host immune signalling pathways during infection to drive the formation of permissive granuloma microenvironments. Dynamic regulation of host microRNA (miRNA) expression is a conserved feature of mycobacterial infections across host-pathogen pairings. Here we examine the role of miR-206 in the zebrafish model of Mycobacterium marinum infection, which allows investigation of the early stages of granuloma formation. We find miR-206 is upregulated following infection by pathogenic M. marinum and that antagomir-mediated knockdown of miR-206 is protective against infection. We observed striking upregulation of cxcl12a and cxcr4b in infected miR-206 knockdown zebrafish embryos and live imaging revealed enhanced recruitment of neutrophils to sites of infection. We used CRISPR/Cas9-mediated knockdown of cxcl12a and cxcr4b expression and AMD3100 inhibition of Cxcr4 to show that the enhanced neutrophil response and reduced bacterial burden caused by miR-206 knockdown was dependent on the Cxcl12/Cxcr4 signalling axis. Together, our data illustrate a pathway through which pathogenic mycobacteria induce host miR-206 expression to suppress Cxcl12/Cxcr4 signalling and prevent protective neutrophil recruitment to granulomas.


Assuntos
Quimiocina CXCL12/metabolismo , MicroRNAs/genética , Infiltração de Neutrófilos/imunologia , Receptores CXCR4/metabolismo , Animais , Quimiocina CXCL12/imunologia , Técnicas de Silenciamento de Genes/métodos , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium marinum/metabolismo , Receptores CXCR4/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Peixe-Zebra/imunologia
6.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32540870

RESUMO

Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections. These bacteria undertake a multistage infection cycle involving invasion of and proliferation within urinary tract epithelial cells, leading to the rupture of the host cell and dispersal of the bacteria, some of which have a highly filamentous morphology. Here, we established a microfluidics-based model of UPEC infection of immortalized human bladder epithelial cells that recapitulates the main stages of bacterial morphological changes during the acute infection cycle in vivo and allows the development and fate of individual cells to be monitored in real time by fluorescence microscopy. The UPEC-infected bladder cells remained alive and mobile in nonconfluent monolayers during the development of intracellular bacterial communities (IBCs). Switching from a flow of growth medium to human urine resulted in immobilization of both uninfected and infected bladder cells. Some IBCs continued to develop and then released many highly filamentous bacteria via an extrusion-like process, whereas other IBCs showed strong UPEC proliferation, and yet no filamentation was detected. The filamentation response was dependent on the weak acidity of human urine and required component(s) in a low molecular-mass (<3,000 Da) fraction from a mildly dehydrated donor. The developmental fate for bacteria therefore appears to be controlled by multiple factors that act at the level of the whole IBC, suggesting that variable local environments or stochastic differentiation pathways influence IBC developmental fates during infection.


Assuntos
Células Epiteliais/microbiologia , Técnicas Analíticas Microfluídicas , Escherichia coli Uropatogênica/patogenicidade , Escherichia coli Uropatogênica/ultraestrutura , Linhagem Celular Transformada , Movimento Celular , Proliferação de Células , Células Epiteliais/patologia , Células Epiteliais/ultraestrutura , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência , Modelos Biológicos , Reologia , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Escherichia coli Uropatogênica/fisiologia , Urotélio/microbiologia , Urotélio/patologia
7.
Mol Microbiol ; 108(3): 276-287, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29465796

RESUMO

Proper protein anchoring is key to the biogenesis of prokaryotic cell surfaces, dynamic, resilient structures that play crucial roles in various cell processes. A novel surface protein anchoring mechanism in Haloferax volcanii depends upon the peptidase archaeosortase A (ArtA) processing C-termini of substrates containing C-terminal tripartite structures and anchoring mature substrates to the cell membrane via intercalation of lipid-modified C-terminal amino acid residues. While this membrane protein lacks clear homology to soluble sortase transpeptidases of Gram-positive bacteria, which also process C-termini of substrates whose C-terminal tripartite structures resemble those of ArtA substrates, archaeosortases do contain conserved cysteine, arginine and arginine/histidine/asparagine residues, reminiscent of His-Cys-Arg residues of sortase catalytic sites. The study presented here shows that ArtAWT -GFP expressed in trans complements ΔartA growth and motility phenotypes, while alanine substitution mutants, Cys173 (C173A), Arg214 (R214A) or Arg253 (R253A), and the serine substitution mutant for Cys173 (C173S), fail to complement these phenotypes. Consistent with sortase active site replacement mutants, ArtAC173A -GFP, ArtAC173S -GFP and ArtAR214A -GFP cannot process substrates, while replacement of the third residue, ArtAR253A -GFP retains some processing activity. These findings support the view that similarities between certain aspects of the structures and functions of the sortases and archaeosortases are the result of convergent evolution.


Assuntos
Aminoaciltransferases/metabolismo , Cisteína Endopeptidases/metabolismo , Haloferax volcanii/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/genética , Archaea/genética , Proteínas Arqueais/metabolismo , Arginina/metabolismo , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Catálise , Domínio Catalítico , Sequência Conservada/genética , Cisteína/metabolismo , Cisteína Endopeptidases/genética , Evolução Molecular , Histidina/metabolismo , Processamento de Proteína Pós-Traducional
8.
PLoS One ; 12(10): e0185947, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29040283

RESUMO

The Min protein system creates a dynamic spatial pattern in Escherichia coli cells where the proteins MinD and MinE oscillate from pole to pole. MinD positions MinC, an inhibitor of FtsZ ring formation, contributing to the mid-cell localization of cell division. In this paper, Fourier analysis is used to decompose experimental and model MinD spatial distributions into time-dependent harmonic components. In both experiment and model, the second harmonic component is responsible for producing a mid-cell minimum in MinD concentration. The features of this harmonic are robust in both experiment and model. Fourier analysis reveals a close correspondence between the time-dependent behaviour of the harmonic components in the experimental data and model. Given this, each molecular species in the model was analysed individually. This analysis revealed that membrane-bound MinD dimer shows the mid-cell minimum with the highest contrast when averaged over time, carrying the strongest signal for positioning the cell division ring. This concurs with previous data showing that the MinD dimer binds to MinC inhibiting FtsZ ring formation. These results show that non-linear interactions of Min proteins are essential for producing the mid-cell positioning signal via the generation of second-order harmonic components in the time-dependent spatial protein distribution.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Divisão Celular , Proteínas do Citoesqueleto/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Análise de Fourier , Cinética , Proteínas de Membrana/metabolismo , Dinâmica não Linear , Multimerização Proteica , Transdução de Sinais , Fatores de Tempo
9.
PLoS One ; 10(5): e0128148, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26018614

RESUMO

Oscillations of the Min protein system are involved in the correct midcell placement of the divisome during Escherichia coli cell division. Based on molecular interactions of the Min system, we formulated a mathematical model that reproduces Min patterning during cell growth and division. Specifically, the increase in the residence time of MinD attached to the membrane as its own concentration increases, is accounted for by dimerisation of membrane-bound MinD and its interaction with MinE. Simulation of this system generates unparalleled correlation between the waveshape of experimental and theoretical MinD distributions, suggesting that the dominant interactions of the physical system have been successfully incorporated into the model. For cells where MinD is fully-labelled with GFP, the model reproduces the stationary localization of MinD-GFP for short cells, followed by oscillations from pole to pole in larger cells, and the transition to the symmetric distribution during cell filamentation. Cells containing a secondary, GFP-labelled MinD display a contrasting pattern. The model is able to account for these differences, including temporary midcell localization just prior to division, by increasing the rate constant controlling MinD ATPase and heterotetramer dissociation. For both experimental conditions, the model can explain how cell division results in an equal distribution of MinD and MinE in the two daughter cells, and accounts for the temperature dependence of the period of Min oscillations. Thus, we show that while other interactions may be present, they are not needed to reproduce the main characteristics of the Min system in vivo.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Adenosina Trifosfatases/metabolismo , Fenômenos Biológicos/fisiologia , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Escherichia coli/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/metabolismo , Modelos Teóricos
10.
PLoS One ; 7(11): e50879, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226417

RESUMO

RalA is a membrane-associated small GTPase that regulates vesicle trafficking. Here we identify a specific interaction between RalA and ERp57, an oxidoreductase and signalling protein. ERp57 bound specifically to the GDP-bound form of RalA, but not the GTP-bound form, and inhibited the dissociation of GDP from RalA in vitro. These activities were inhibited by reducing agents, but no disulphide bonds were detected between RalA and ERp57. Mutation of all four of ERp57's active site cysteine residues blocked sensitivity to reducing agents, suggesting that redox-dependent conformational changes in ERp57 affect binding to RalA. Mutations in the switch II region of the GTPase domain of RalA specifically reduced or abolished binding to ERp57, but did not block GTP-specific binding to known RalA effectors, the exocyst and RalBP1. Oxidative treatment of A431 cells with H(2)O(2) inhibited cellular RalA activity, and the effect was exacerbated by expression of recombinant ERp57. The oxidative treatment significantly increased the amount of RalA localised to the cytosol. These findings suggest that ERp57 regulates RalA signalling by acting as a redox-sensitive guanine-nucleotide dissociation inhibitor (RalGDI).


Assuntos
Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Guanosina Difosfato/metabolismo , Humanos , Dados de Sequência Molecular , Oxirredução , Estresse Oxidativo , Peptídeos/química , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/química , Ratos , Frações Subcelulares/metabolismo
11.
Biochim Biophys Acta ; 1773(7): 1062-72, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17524504

RESUMO

P-glycoprotein (P-gp) is a plasma membrane glycoprotein that can cause multidrug resistance (MDR) of cancer cells by acting as an ATP-dependent drug efflux pump. The regulatory effects of the small GTPases Rab5 and RalA on the intracellular trafficking of P-gp were investigated in HeLa cells. As expected, overexpressed enhanced green fluorescent protein (EGFP)-tagged P-gp (P-gp-EGFP) is mainly localised to the plasma membrane. However, upon cotransfection of either dominant negative Rab5 (Rab5-S34N) or constitutively active RalA (RalA-G23V) the intracellular P-gp-EGFP levels increased approximately 9 and 13 fold, respectively, compared to control P-gp-EGFP cells. These results suggest that Rab5 and RalA regulate P-gp trafficking between the plasma membrane and an intracellular compartment. In contrast, coexpression of constitutively active Rab5 (Rab5-Q79L) or dominant negative RalA (RalA-S28N) had no effect on the localisation of P-gp-EGFP. Furthermore, the intracellular accumulation of daunorubicin, a substrate for P-gp, increased significantly with an increased intracellular localisation of P-gp-EGFP. These results imply that it may be possible to overcome MDR by controlling the plasma membrane localisation of P-gp.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Antibióticos Antineoplásicos/metabolismo , Transporte Biológico/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Daunorrubicina/metabolismo , Resistência a Múltiplos Medicamentos , Humanos , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA