Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JMIR Dermatol ; 6: e48589, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147369

RESUMO

BACKGROUND: Chronic graft-versus-host disease (cGVHD) is a significant cause of long-term morbidity and mortality in patients after allogeneic hematopoietic cell transplantation. Skin is the most commonly affected organ, and visual assessment of cGVHD can have low reliability. Crowdsourcing data from nonexpert participants has been used for numerous medical applications, including image labeling and segmentation tasks. OBJECTIVE: This study aimed to assess the ability of crowds of nonexpert raters-individuals without any prior training for identifying or marking cGHVD-to demarcate photos of cGVHD-affected skin. We also studied the effect of training and feedback on crowd performance. METHODS: Using a Canfield Vectra H1 3D camera, 360 photographs of the skin of 36 patients with cGVHD were taken. Ground truth demarcations were provided in 3D by a trained expert and reviewed by a board-certified dermatologist. In total, 3000 2D images (projections from various angles) were created for crowd demarcation through the DiagnosUs mobile app. Raters were split into high and low feedback groups. The performances of 4 different crowds of nonexperts were analyzed, including 17 raters per image for the low and high feedback groups, 32-35 raters per image for the low feedback group, and the top 5 performers for each image from the low feedback group. RESULTS: Across 8 demarcation competitions, 130 raters were recruited to the high feedback group and 161 to the low feedback group. This resulted in a total of 54,887 individual demarcations from the high feedback group and 78,967 from the low feedback group. The nonexpert crowds achieved good overall performance for segmenting cGVHD-affected skin with minimal training, achieving a median surface area error of less than 12% of skin pixels for all crowds in both the high and low feedback groups. The low feedback crowds performed slightly poorer than the high feedback crowd, even when a larger crowd was used. Tracking the 5 most reliable raters from the low feedback group for each image recovered a performance similar to that of the high feedback crowd. Higher variability between raters for a given image was not found to correlate with lower performance of the crowd consensus demarcation and cannot therefore be used as a measure of reliability. No significant learning was observed during the task as more photos and feedback were seen. CONCLUSIONS: Crowds of nonexpert raters can demarcate cGVHD images with good overall performance. Tracking the top 5 most reliable raters provided optimal results, obtaining the best performance with the lowest number of expert demarcations required for adequate training. However, the agreement amongst individual nonexperts does not help predict whether the crowd has provided an accurate result. Future work should explore the performance of crowdsourcing in standard clinical photos and further methods to estimate the reliability of consensus demarcations.

2.
JMIR Med Inform ; 11: e38412, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652282

RESUMO

BACKGROUND: Dermoscopy is commonly used for the evaluation of pigmented lesions, but agreement between experts for identification of dermoscopic structures is known to be relatively poor. Expert labeling of medical data is a bottleneck in the development of machine learning (ML) tools, and crowdsourcing has been demonstrated as a cost- and time-efficient method for the annotation of medical images. OBJECTIVE: The aim of this study is to demonstrate that crowdsourcing can be used to label basic dermoscopic structures from images of pigmented lesions with similar reliability to a group of experts. METHODS: First, we obtained labels of 248 images of melanocytic lesions with 31 dermoscopic "subfeatures" labeled by 20 dermoscopy experts. These were then collapsed into 6 dermoscopic "superfeatures" based on structural similarity, due to low interrater reliability (IRR): dots, globules, lines, network structures, regression structures, and vessels. These images were then used as the gold standard for the crowd study. The commercial platform DiagnosUs was used to obtain annotations from a nonexpert crowd for the presence or absence of the 6 superfeatures in each of the 248 images. We replicated this methodology with a group of 7 dermatologists to allow direct comparison with the nonexpert crowd. The Cohen κ value was used to measure agreement across raters. RESULTS: In total, we obtained 139,731 ratings of the 6 dermoscopic superfeatures from the crowd. There was relatively lower agreement for the identification of dots and globules (the median κ values were 0.526 and 0.395, respectively), whereas network structures and vessels showed the highest agreement (the median κ values were 0.581 and 0.798, respectively). This pattern was also seen among the expert raters, who had median κ values of 0.483 and 0.517 for dots and globules, respectively, and 0.758 and 0.790 for network structures and vessels. The median κ values between nonexperts and thresholded average-expert readers were 0.709 for dots, 0.719 for globules, 0.714 for lines, 0.838 for network structures, 0.818 for regression structures, and 0.728 for vessels. CONCLUSIONS: This study confirmed that IRR for different dermoscopic features varied among a group of experts; a similar pattern was observed in a nonexpert crowd. There was good or excellent agreement for each of the 6 superfeatures between the crowd and the experts, highlighting the similar reliability of the crowd for labeling dermoscopic images. This confirms the feasibility and dependability of using crowdsourcing as a scalable solution to annotate large sets of dermoscopic images, with several potential clinical and educational applications, including the development of novel, explainable ML tools.

3.
J Arthroplasty ; 38(10): 2075-2080, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35398523

RESUMO

BACKGROUND: The purpose of this study is to assess the viability of a knee arthroplasty prediction model using 3-view X-rays that helps determine if patients with knee pain are candidates for total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), or are not arthroplasty candidates. METHODS: Analysis was performed using radiographic and surgical data from a high-volume joint replacement practice. The dataset included 3 different X-ray views (anterior-posterior, lateral, and sunrise) for 2,767 patients along with information of whether that patient underwent an arthroplasty surgery (UKA or TKA) or not. This resulted in a dataset including 8,301 images from 2,707 patients. This dataset was then split into a training set (70%) and holdout test set (30%). A computer vision model was trained using a transfer learning approach. The performance of the computer vision model was evaluated on the holdout test set. Accuracy and multiclass receiver operating characteristic area under curve was used to evaluate the performance of the model. RESULTS: The artificial intelligence model achieved an accuracy of 87.8% on the holdout test set and a quadratic Cohen's kappa score of 0.811. The multiclass receiver operating characteristic area under curve score for TKA was calculated to be 0.97; for UKA a score of 0.96 and for No Surgery a score of 0.98 was achieved. An accuracy of 93.8% was achieved for predicting Surgery versus No Surgery and 88% for TKA versus not TKA was achieved. CONCLUSION: The artificial intelligence/machine learning model demonstrated viability for predicting which patients are candidates for a UKA, TKA, or no surgical intervention.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Humanos , Artroplastia do Joelho/métodos , Osteoartrite do Joelho/cirurgia , Inteligência Artificial , Resultado do Tratamento , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA