Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mucosal Immunol ; 15(4): 629-641, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35501356

RESUMO

The nervous system and the immune system both rely on an extensive set of modalities to perceive and act on perturbations in the internal and external environments. During feeding, the intestine is exposed to nutrients that may contain noxious substances and pathogens. Here we show that Vasoactive Intestinal Peptide (VIP), produced by the nervous system in response to feeding, potentiates the production of effector cytokines by intestinal type 2 and type 3 innate lymphoid cells (ILC2s and ILC3s). Exposure to VIP alone leads to modest activation of ILCs, but strongly potentiates ILCs to concomitant or subsequent activation by the inducer cytokines IL-33 or IL-23, via mobilization of cAMP and energy by glycolysis. Consequently, VIP increases resistance to intestinal infection by the helminth Trichuris muris and the enterobacteria Citrobacter rodentium. These findings uncover a functional neuro-immune crosstalk unfolding during feeding that increases the reactivity of innate immunity necessary to face potential threats associated with food intake.


Assuntos
Neuropeptídeos , Peptídeo Intestinal Vasoativo , Citocinas/metabolismo , Imunidade Inata , Intestinos , Linfócitos , Neuropeptídeos/metabolismo
2.
Immunity ; 50(5): 1276-1288.e5, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30902637

RESUMO

Microbes colonize all body surfaces at birth and participate in the development of the immune system. In newborn mammals, the intestinal microbiota is first shaped by the dietary and immunological components of milk and then changes upon the introduction of solid food during weaning. Here, we explored the reactivity of the mouse intestinal immune system during the first weeks after birth and into adulthood. At weaning, the intestinal microbiota induced a vigorous immune response-a "weaning reaction"-that was programmed in time. Inhibition of the weaning reaction led to pathological imprinting and increased susceptibility to colitis, allergic inflammation, and cancer later in life. Prevention of this pathological imprinting was associated with the generation of RORγt+ regulatory T cells, which required bacterial and dietary metabolites-short-chain fatty acids and retinoic acid. Thus, the weaning reaction to microbiota is required for immune ontogeny, the perturbation of which leads to increased susceptibility to immunopathologies later in life.


Assuntos
Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Linfócitos T Reguladores/imunologia , Desmame , Animais , Animais Recém-Nascidos/imunologia , Animais Recém-Nascidos/microbiologia , Ácidos Graxos Voláteis/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Tretinoína/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(4): E506-E513, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28074039

RESUMO

The intestinal epithelium is continuously renewed by intestinal epithelial stem cells (IESCs) positioned at the base of each crypt. Mesenchymal-derived factors are essential to maintain IESCs; however, the cellular composition and development of such mesenchymal niche remains unclear. Here, we identify pericryptal CD34+ Gp38+ αSMA- mesenchymal cells closely associated with Lgr5+ IESCs. We demonstrate that CD34+ Gp38+ cells are the major intestinal producers of the niche factors Wnt2b, Gremlin1, and R-spondin1, and are sufficient to promote maintenance of Lgr5+ IESCs in intestinal organoids, an effect mainly mediated by Gremlin1. CD34+ Gp38+ cells develop after birth in the intestinal submucosa and expand around the crypts during the third week of life in mice, independently of the microbiota. We further show that pericryptal CD34+gp38+ cells are rapidly activated by intestinal injury, up-regulating niche factors Gremlin1 and R-spondin1 as well as chemokines, proinflammatory cytokines, and growth factors with key roles in gut immunity and tissue repair, including IL-7, Ccl2, Ptgs2, and Amphiregulin. Our results indicate that CD34+ Gp38+ mesenchymal cells are programmed to develop in the intestine after birth to constitute a specialized microenvironment that maintains IESCs at homeostasis and contribute to intestinal inflammation and repair after injury.


Assuntos
Antígenos CD34/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nicho de Células-Tronco , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana , Homeostase , Mucosa Intestinal/citologia , Camundongos Endogâmicos C57BL
4.
Nat Med ; 18(8): 1262-70, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22842476

RESUMO

Profibrotic cells that develop upon injury generate permanent scar tissue and impair organ recovery, though their origin and fate are unclear. Here we show that transient expression of ADAM12 (a disintegrin and metalloprotease 12) identifies a distinct proinflammatory subset of platelet-derived growth factor receptor-α-positive stromal cells that are activated upon acute injury in the muscle and dermis. By inducible genetic fate mapping, we demonstrate in vivo that injury-induced ADAM12(+) cells are specific progenitors of a major fraction of collagen-overproducing cells generated during scarring, which are progressively eliminated during healing. Genetic ablation of ADAM12(+) cells, or knockdown of ADAM12, is sufficient to limit generation of profibrotic cells and interstitial collagen accumulation. ADAM12(+) cells induced upon injury are developmentally distinct from muscle and skin lineage cells and are derived from fetal ADAM12(+) cells programmed during vascular wall development. Thus, our data identify injury-activated profibrotic progenitors residing in the perivascular space that can be targeted through ADAM12 to limit tissue scarring.


Assuntos
Proteínas ADAM/análise , Cicatriz/patologia , Derme/lesões , Músculo Esquelético/lesões , Miofibroblastos/patologia , Células Estromais/patologia , Proteínas ADAM/deficiência , Proteínas ADAM/genética , Proteína ADAM12 , Doença Aguda , Adipócitos/patologia , Animais , Vasos Sanguíneos/citologia , Linhagem da Célula , Proteínas Cardiotóxicas de Elapídeos/toxicidade , Colágeno/biossíntese , Cruzamentos Genéticos , Derme/metabolismo , Derme/patologia , Orelha Externa/lesões , Orelha Externa/metabolismo , Orelha Externa/patologia , Fibrose , Adjuvante de Freund/toxicidade , Técnicas de Silenciamento de Genes , Genes Reporter , Traumatismos da Perna/metabolismo , Traumatismos da Perna/patologia , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miofibroblastos/metabolismo , Parabiose , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/análise , Organismos Livres de Patógenos Específicos , Células Estromais/metabolismo , Cicatrização
5.
J Immunol ; 182(9): 5789-99, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19380827

RESUMO

Stromal cells in lymphoid tissues regulate lymphocyte recruitment and survival through the expression of specific chemokines and cytokines. During inflammation, the same signals recruit lymphocytes to the site of injury; however, the "lymphoid" stromal (LS) cells producing these signals remain poorly characterized. We find that mouse inflammatory lesions and tumors develop gp38(+) LS cells, in recapitulation of the development of LS cells early during the ontogeny of lymphoid organs and the intestine, and express a set of genes that promotes the development of lymphocyte-permissive tissues. These gp38(+) LS cells are induced by a robust pathway that requires myeloid cells but not known Toll- or NOD-like receptors, the inflammasome, or adaptive immunity. Parabiosis and inducible genetic cell fate mapping experiments indicate that local precursors, presumably resident fibroblasts rather that circulating precursors, massively proliferate and give rise to LS cells during inflammation. Our results show that LS cells are both programmed during ontogeny and reinduced during inflammation.


Assuntos
Movimento Celular/imunologia , Inflamação/imunologia , Inflamação/patologia , Tecido Linfoide/imunologia , Tecido Linfoide/patologia , Animais , Quimiocinas/biossíntese , Citocinas/biossíntese , Inflamação/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Mucosa Intestinal/embriologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/patologia , Tecido Linfoide/embriologia , Glicoproteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Camundongos Transgênicos , Células Estromais/imunologia , Células Estromais/metabolismo , Células Estromais/patologia
6.
FEBS Lett ; 559(1-3): 89-95, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14960313

RESUMO

We have previously shown that HMGA1 enhances the transcriptional activity of promoters containing the estrogen response element (ERE) and increases binding of the estrogen receptor (ER) to ERE. Herein, we have assessed the transcriptional activity and ERE-binding ability of deleted ER fragments in absence or in presence of HMGA1. The HMGA1 protein stimulated binding and transcriptional activity by a factor of about 2-fold compared to the wild-type ER and both the N- and C-terminal ER deleted domains, but had no effect when both domains were deleted. These data show that HMGA1 cooperates with either the N- or the C-terminal transcriptional activation domain of the ER.


Assuntos
Proteína HMGA1a/metabolismo , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Receptor alfa de Estrogênio , Proteína HMGA1a/genética , Proteína HMGA1a/fisiologia , Humanos , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Estrogênio/genética , Elementos de Resposta , Deleção de Sequência , Transcrição Gênica , Ativação Transcricional , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA