Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1349446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510468

RESUMO

Spinal cord injury (SCI) substantially reduces the quality of life of affected individuals. Recovery of function is therefore a primary concern of the patient population and a primary goal for therapeutic interventions. Currently, even with growing numbers of clinical trials, there are still no effective treatments that can improve neurological outcomes after SCI. A large body of work has demonstrated that transplantation of neural stem/progenitor cells (NSPCs) can promote regeneration of the injured spinal cord by providing new neurons that can integrate into injured host neural circuitry. Despite these promising findings, the degree of functional recovery observed after NSPC transplantation remains modest. It is evident that treatment of such a complex injury cannot be addressed with a single therapeutic approach. In this mini-review, we discuss combinatorial strategies that can be used along with NSPC transplantation to promote spinal cord regeneration. We begin by introducing bioengineering and neuromodulatory approaches, and highlight promising work using these strategies in integration with NSPCs transplantation. The future of NSPC transplantation will likely include a multi-factorial approach, combining stem cells with biomaterials and/or neuromodulation as a promising treatment for SCI.

2.
J Neurotrauma ; 40(23-24): 2487-2499, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37597207

RESUMO

Spinal cord injury (SCI) affects millions of people worldwide. Neural progenitor cell (NPC) transplantation is a promising treatment for regenerating lost spinal cord tissue and restoring neurological function after SCI. We conducted a literature search and found that less than a quarter of experimental rodent cell and tissue transplantation studies have investigated anatomical outcomes at longer than 4 months post-transplantation. This is a critical topic to investigate, given that stem and progenitor cell therapies would need to remain in place throughout the lifetime of an individual. We sought to determine how commonly assessed anatomical outcomes evolve between early and far chronic time-points post-NPC transplantation. At either 8 weeks or 26 weeks following transplantation of NPCs into sites of cervical SCI, we evaluated graft neuronal density, astroglial cell density, graft axon outgrowth, and regeneration of host axon populations into grafts in male and female mice. We found that graft neuronal density does not change over time, but the numbers of graft-associated astrocytes and glial fibrillary acidic protein intensity is significantly increased in the far chronic phase compared with the early chronic time-point. In addition, graft axon outgrowth was significantly decreased at 26 weeks post-transplantation compared with 8 weeks post-transplantation. In contrast, corticospinal axon regeneration into grafts was not diminished over time, but rather increased significantly from early to far chronic periods. Interestingly, we found that graft neuronal density is significantly influenced by sex of the host animal, suggesting that sex-dependent processes may shape graft composition over time. Collectively, these results demonstrate that NPC transplants are dynamic and that commonly assessed outcome measures associated with graft efficacy evolve over the weeks to months post-transplantation into the spinal cord.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Camundongos , Masculino , Feminino , Humanos , Animais , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/transplante , Medula Espinal , Neurônios , Transplante de Células-Tronco/métodos
3.
Commun Biol ; 6(1): 544, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208439

RESUMO

Neural progenitor cell (NPC) transplantation is a promising therapeutic strategy for replacing lost neurons following spinal cord injury (SCI). However, how graft cellular composition influences regeneration and synaptogenesis of host axon populations, or recovery of motor and sensory functions after SCI, is poorly understood. We transplanted developmentally-restricted spinal cord NPCs, isolated from E11.5-E13.5 mouse embryos, into sites of adult mouse SCI and analyzed graft axon outgrowth, cellular composition, host axon regeneration, and behavior. Earlier-stage grafts exhibited greater axon outgrowth, enrichment for ventral spinal cord interneurons and Group-Z spinal interneurons, and enhanced host 5-HT+ axon regeneration. Later-stage grafts were enriched for late-born dorsal horn interneuronal subtypes and Group-N spinal interneurons, supported more extensive host CGRP+ axon ingrowth, and exacerbated thermal hypersensitivity. Locomotor function was not affected by any type of NPC graft. These findings showcase the role of spinal cord graft cellular composition in determining anatomical and functional outcomes following SCI.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Camundongos , Animais , Axônios/fisiologia , Regeneração Nervosa , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Traumatismos da Medula Espinal/terapia
4.
Nat Commun ; 13(1): 5380, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104357

RESUMO

Despite advancement of neural progenitor cell transplantation to spinal cord injury clinical trials, there remains a lack of understanding of how biological sex of transplanted cells influences outcomes after transplantation. To address this, we transplanted GFP-expressing sex-matched, sex-mismatched, or mixed donor cells into sites of spinal cord injury in adult male and female mice. Biological sex of the donor cells does not influence graft neuron density, glial differentiation, formation of the reactive glial cell border, or graft axon outgrowth. However, male grafts in female hosts feature extensive hypervascularization accompanied by increased vascular diameter and perivascular cell density. We show greater T-cell infiltration within male-to-female grafts than other graft types. Together, these findings indicate a biological sex-specific immune response of female mice to male donor cells. Our work suggests that biological sex should be considered in the design of future clinical trials for cell transplantation in human injury.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Animais , Feminino , Humanos , Masculino , Camundongos , Células-Tronco Neurais/transplante , Neuroglia , Neurônios , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco
5.
Exp Neurol ; 352: 114048, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304102

RESUMO

Spinal cord injury (SCI) frequently results in immediate and sustained neurological dysfunction, including intractable neuropathic pain in approximately 60-80% of individuals. SCI induces immediate mechanical damage to spinal cord tissue followed by a period of secondary injury in which tissue damage is further propagated, contributing to the development of anatomically unique lesions. Variability in lesion size and location influences the degree of motor and sensory dysfunction incurred by an individual. We predicted that variability in lesion parameters may also explain why some, but not all, experimental animals develop mechanical sensitivity after SCI. To characterize the relationship of lesion anatomy to mechanical allodynia, we utilized a mouse cervical hemicontusion model of SCI that has been shown to lead to the development and persistence of mechanical allodynia in the ipsilateral forelimb after injury. At four weeks post-SCI, the numbers and locations of surviving neurons were quantified along with total lesion volume and nociceptive fiber sprouting. We found that the subset of animals exhibiting mechanical allodynia had significantly increased neuronal sparing in the ipsilateral dorsal horn around the lesion epicenter compared to animals that did not exhibit mechanical allodynia. Additionally, we failed to observe significant differences between groups in nociceptive fiber density in the dorsal horn around the lesion epicenter. Notably, we found that impactor probe displacement upon administration of the SCI surgery was significantly lower in sensitive animals compared with not-sensitive animals. Together, our data indicate that lesion severity negatively correlates with the manifestation of at-level mechanical hypersensitivity and suggests that sparing of dorsal horn neurons may be required for the development of neuropathic pain.


Assuntos
Medula Cervical , Neuralgia , Traumatismos da Medula Espinal , Animais , Modelos Animais de Doenças , Hiperalgesia/etiologia , Hiperalgesia/patologia , Camundongos , Neuralgia/patologia , Células do Corno Posterior/patologia , Medula Espinal/patologia , Corno Dorsal da Medula Espinal/patologia
6.
Nat Rev Neurosci ; 21(7): 366-383, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32518349

RESUMO

Spinal cord injury remains a scientific and therapeutic challenge with great cost to individuals and society. The goal of research in this field is to find a means of restoring lost function. Recently we have seen considerable progress in understanding the injury process and the capacity of CNS neurons to regenerate, as well as innovations in stem cell biology. This presents an opportunity to develop effective transplantation strategies to provide new neural cells to promote the formation of new neuronal networks and functional connectivity. Past and ongoing clinical studies have demonstrated the safety of cell therapy, and preclinical research has used models of spinal cord injury to better elucidate the underlying mechanisms through which donor cells interact with the host and thus increase long-term efficacy. While a variety of cell therapies have been explored, we focus here on the use of neural progenitor cells obtained or derived from different sources to promote connectivity in sensory, motor and autonomic systems.


Assuntos
Células-Tronco Neurais/transplante , Traumatismos da Medula Espinal/cirurgia , Transplante/métodos , Animais , Previsões , Humanos
7.
Methods Mol Biol ; 1950: 165-176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30783973

RESUMO

The mapping of long-range axonal projections is a rapidly growing endeavor in the field of neuroscience. Recent advances in the development of adeno-associated viral vectors that can achieve efficient retrograde transport now enable the characterization and manipulation of specific neuronal subpopulations using Cre-dependent, intersectional approaches. Importantly, these approaches can be applied to non-transgenic animals, making it possible to carry out detailed anatomical studies across a variety of species including nonhuman primates. In this chapter, we demonstrate the utility of such intersectional strategies by describing methods for targeting viral constructs to distinct subsets of corticospinal motor neurons based on their projections to specific spinal cord segments.


Assuntos
Rastreamento de Células , Córtex Cerebral/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Medula Espinal/metabolismo , Transdução Genética , Animais , Rastreamento de Células/métodos , Expressão Gênica , Genes Reporter , Vetores Genéticos/administração & dosagem , Neurônios Motores/metabolismo , Ratos , Transgenes
8.
Sci Transl Med ; 10(442)2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29794059

RESUMO

Axon regeneration after spinal cord injury (SCI) is attenuated by growth inhibitory molecules associated with myelin. We report that rat myelin stimulated the growth of axons emerging from rat neural progenitor cells (NPCs) transplanted into sites of SCI in adult rat recipients. When plated on a myelin substrate, neurite outgrowth from rat NPCs and from human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) was enhanced threefold. In vivo, rat NPCs and human iPSC-derived NSCs extended greater numbers of axons through adult central nervous system white matter than through gray matter and preferentially associated with rat host myelin. Mechanistic investigations excluded Nogo receptor signaling as a mediator of stem cell-derived axon growth in response to myelin. Transcriptomic screens of rodent NPCs identified the cell adhesion molecule neuronal growth regulator 1 (Negr1) as one mediator of permissive axon-myelin interactions. The stimulatory effect of myelin-associated proteins on rodent NPCs was developmentally regulated and involved direct activation of the extracellular signal-regulated kinase (ERK). The stimulatory effects of myelin on NPC/NSC axon outgrowth should be investigated further and could potentially be exploited for neural repair after SCI.


Assuntos
Envelhecimento/metabolismo , Axônios/metabolismo , Bainha de Mielina/metabolismo , Células-Tronco Neurais/citologia , Crescimento Neuronal , Animais , Axônios/ultraestrutura , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Substância Cinzenta/citologia , Humanos , Camundongos Endogâmicos C57BL , Bainha de Mielina/ultraestrutura , Células-Tronco Neurais/ultraestrutura , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Endogâmicos F344 , Ratos Nus , Medula Espinal/citologia , Substância Branca/citologia
9.
Nat Commun ; 9(1): 84, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311559

RESUMO

Neural progenitor cell (NPC) transplantation has high therapeutic potential in neurological disorders. Functional restoration may depend on the formation of reciprocal connections between host and graft. While it has been reported that axons extending out of neural grafts in the brain form contacts onto phenotypically appropriate host target regions, it is not known whether adult, injured host axons regenerating into NPC grafts also form appropriate connections. We report that spinal cord NPCs grafted into the injured adult rat spinal cord self-assemble organotypic, dorsal horn-like domains. These clusters are extensively innervated by regenerating adult host sensory axons and are avoided by corticospinal axons. Moreover, host axon regeneration into grafts increases significantly after enrichment with appropriate neuronal targets. Together, these findings demonstrate that injured adult axons retain the ability to recognize appropriate targets and avoid inappropriate targets within neural progenitor grafts, suggesting that restoration of complex circuitry after SCI may be achievable.


Assuntos
Axônios/fisiologia , Neurônios Motores/fisiologia , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/transplante , Células Receptoras Sensoriais/fisiologia , Corno Dorsal da Medula Espinal/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Feminino , Masculino , Células-Tronco Neurais/fisiologia , Ratos , Medula Espinal/citologia , Transplante de Células-Tronco
10.
Sci Transl Med ; 9(413)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070698

RESUMO

Friedreich's ataxia (FRDA) is an incurable autosomal recessive neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin due to an intronic GAA-repeat expansion in the FXN gene. We report the therapeutic efficacy of transplanting wild-type mouse hematopoietic stem and progenitor cells (HSPCs) into the YG8R mouse model of FRDA. In the HSPC-transplanted YG8R mice, development of muscle weakness and locomotor deficits was abrogated as was degeneration of large sensory neurons in the dorsal root ganglia (DRGs) and mitochondrial capacity was improved in brain, skeletal muscle, and heart. Transplanted HSPCs engrafted and then differentiated into microglia in the brain and spinal cord and into macrophages in the DRGs, heart, and muscle of YG8R FRDA mice. We observed the transfer of wild-type frataxin and Cox8 mitochondrial proteins from HSPC-derived microglia/macrophages to FRDA mouse neurons and muscle myocytes in vivo. Our results show the HSPC-mediated phenotypic rescue of FRDA in YG8R mice and suggest that this approach should be investigated further as a strategy for treating FRDA.


Assuntos
Ataxia de Friedreich/terapia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Animais , Comportamento Animal , Diferenciação Celular , Modelos Animais de Doenças , Fibroblastos/metabolismo , Ataxia de Friedreich/patologia , Ataxia de Friedreich/fisiopatologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Locomoção , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Sistema Nervoso/patologia , Fagocitose , Células Receptoras Sensoriais/patologia , Frataxina
11.
Nat Med ; 22(5): 479-87, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27019328

RESUMO

The corticospinal tract (CST) is the most important motor system in humans, yet robust regeneration of this projection after spinal cord injury (SCI) has not been accomplished. In murine models of SCI, we report robust corticospinal axon regeneration, functional synapse formation and improved skilled forelimb function after grafting multipotent neural progenitor cells into sites of SCI. Corticospinal regeneration requires grafts to be driven toward caudalized (spinal cord), rather than rostralized, fates. Fully mature caudalized neural grafts also support corticospinal regeneration. Moreover, corticospinal axons can emerge from neural grafts and regenerate beyond the lesion, a process that is potentially related to the attenuation of the glial scar. Rat corticospinal axons also regenerate into human donor grafts of caudal spinal cord identity. Collectively, these findings indicate that spinal cord 'replacement' with homologous neural stem cells enables robust regeneration of the corticospinal projection within and beyond spinal cord lesion sites, achieving a major unmet goal of SCI research and offering new possibilities for clinical translation.


Assuntos
Regeneração Nervosa , Células-Tronco Neurais/transplante , Tratos Piramidais/fisiologia , Traumatismos da Medula Espinal , Medula Espinal/fisiologia , Animais , Axônios/fisiologia , Comportamento Animal , Linhagem Celular , Sobrevivência Celular , Vértebras Cervicais , Cicatriz , Fenômenos Eletrofisiológicos , Feminino , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Neurais/fisiologia , Células Neuroepiteliais/fisiologia , Neuroglia , Tratos Piramidais/metabolismo , Tratos Piramidais/patologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/metabolismo , Medula Espinal/patologia , Sinapses/fisiologia , Vértebras Torácicas , Transplante Homólogo
12.
J Neurotrauma ; 30(3): 211-26, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22947335

RESUMO

There are currently no proven effective treatments that can improve recovery of function in spinal cord injury (SCI) patients. Many therapeutic compounds have shown promise in pre-clinical studies, but clinical trials have been largely unsuccessful. P-glycoprotein (Pgp, Abcb1b) is a drug efflux transporter of the blood-spinal cord barrier that limits spinal cord penetration of blood-borne xenobiotics. Pathological Pgp upregulation in diseases such as cancer causes heightened resistance to a broad variety of therapeutic drugs. Importantly, several drugs that have been evaluated for the treatment of SCI, such as riluzole, are known substrates of Pgp. We therefore examined whether Pgp-mediated pharmacoresistance diminishes delivery of riluzole to the injured spinal cord. Following moderate contusion injury at T10 in male Sprague-Dawley rats, we observed a progressive, spatial spread of increased Pgp expression from 3 days to 10 months post-SCI. Spinal cord uptake of i.p.-delivered riluzole was significantly reduced following SCI in wild type but not Abcb1a-knockout rats, highlighting a critical role for Pgp in mediating drug resistance following SCI. Because inflammation can drive Pgp upregulation, we evaluated the ability of the new generation dual anti-inflammatory drug licofelone to promote spinal cord delivery of riluzole following SCI. We found that licofelone both reduced Pgp expression and enhanced riluzole bioavailability within the lesion site at 72 h post-SCI. This work highlights Pgp-mediated drug resistance as an important obstacle to therapeutic drug delivery for SCI, and suggests licofelone as a novel combinatorial treatment strategy to enhance therapeutic drug delivery to the injured spinal cord.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Inibidores Enzimáticos/farmacologia , Pirróis/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Disponibilidade Biológica , Modelos Animais de Doenças , Resistência a Medicamentos , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Knockout , Fármacos Neuroprotetores/farmacologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Riluzol/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA