RESUMO
The mitochondrial Ca2+ uniporter (MCU) plays crucial role in intramitochondrial Ca2+ uptake, allowing Ca2+-dependent activation of oxidative metabolism. In recent decades, the role of MCU pore-forming proteins has been highlighted in cancer. However, the contribution of MCU-associated regulatory proteins mitochondrial calcium uptake 1 and 2 (MICU1 and MICU2) to pathophysiological conditions has been poorly investigated. Here, we describe the role of MICU2 in cell proliferation and invasion using in vitro and in vivo models of human colorectal cancer (CRC). Transcriptomic analysis demonstrated an increase in MICU2 expression and the MICU2/MICU1 ratio in advanced CRC and CRC-derived metastases. We report that expression of MICU2 is necessary for mitochondrial Ca2+ uptake and quality of the mitochondrial network. Our data reveal the interplay between MICU2 and MICU1 in the metabolic flexibility between anaerobic glycolysis and OXPHOS. Overall, our study sheds light on the potential role of the MICUs in diseases associated with metabolic reprogramming.
RESUMO
Long noncoding RNAs (lncRNAs) are a subclass of noncoding RNAs composed of more than 200 nucleotides without the ability to encode functional proteins. Given their involvement in critical cellular processes such as gene expression regulation, transcription, and translation, lncRNAs play a significant role in organism homeostasis. Breast cancer (BC) is the second most common cancer worldwide and evidence has shown a relationship between aberrant lncRNA expression and BC development. One of the main obstacles in BC control is multidrug chemoresistance, which is associated with the deregulation of multiple mechanisms such as efflux transporter activity, mitochondrial metabolism reprogramming, and epigenetic regulation as well as apoptosis and autophagy. Studies have shown the involvement of a large number of lncRNAs in the regulation of such pathways. However, the underlying mechanism is not clearly elucidated. In this review, we present the principal mechanisms associated with BC chemoresistance that can be directly or indirectly regulated by lncRNA, highlighting the importance of lncRNA in controlling BC chemoresistance. Understanding these mechanisms in deep detail may interest the clinical outcome of BC patients and could be used as therapeutic targets to overcome BC therapy resistance.
Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Regulação Neoplásica da Expressão GênicaRESUMO
Prognostic factors for epithelial ovarian cancers (EOCs) are in particular clinical factors such as pathology staging at diagnosis (FIGO stages), genetic mutation, or histological phenotypes. In the present study, FIGO stage, tumor residue after surgery, and body mass index were clinical predictors of recurrence-free survival (RFS). Nonetheless, a number of studies support a lipid metabolism disorder in ovarian cancer patients. The objective of this pilot study was to explore whether fatty acid composition of adipose reflecting the qualitative dietary intake and fatty acids metabolism may be associated with RFS. Forty-six women with EOCs and six with borderline ovarian tumors between March 2017 and January 2020 were included in this prospective study at Tours university teaching hospital (central France). The patients involved in the present study are part of the METERMUS trial (clinicaltrials.gov NCT03027479). Adipose tissue specimens from four abdominal locations (superficial and deep subcutaneous, visceral (pericolic), and omental) were collected during surgery or exploratory laparoscopy. A fatty acid profile of adipose tissue triglycerides was established by gas chromatography. Fatty acids composition was compared among the four locations using nonparametric Friedman's ANOVA test for repeated measures. Median follow-up of EOC patients was 15 months and patients' RFS was analyzed using Kaplan−Meier survival curves and log-rank test by separating patients into two groups according to median fatty acid levels. The content of long-chain saturated fatty acids (SFAs) was increased and that of long-chain polyunsaturated fatty acids (PUFAs) decreased in deep versus superficial subcutaneous adipose tissue in EOC patients. Nevertheless, the content of total SFAs was ~28%, monounsaturated fatty acids (MUFAs) ~55%, PUFAs n-6 ~11.5%, and PUFAs n-3 about 1.3%, whatever the adipose tissue. When EOC patients were separated into two groups by median fatty acid content, total PUFAs (n-6+n-3) levels, whatever the adipose tissue, were positively and independently associated with RFS. RFS was about two times longer in EOC patients with high versus low total PUFA content (median survival: 12 vs. 27 months, p = 0.01 to <0.0001 according to the tissue). Content of total PUFAs (n-6+n-3) in abdominal adipose tissue (visceral and subcutaneous) are new prognostic factors in EOC.
Assuntos
Ácidos Graxos Insaturados , Neoplasias Ovarianas , Feminino , Humanos , Estudos Prospectivos , Projetos Piloto , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo , Tecido Adiposo/metabolismo , Gordura Abdominal/metabolismo , Neoplasias Ovarianas/metabolismoRESUMO
While clinical evidence remains limited, an extensive amount of research suggests a beneficial role of n-3 polyunsaturated fatty acid supplementation in cancer treatment. One potential benefit is an improvement of protein homeostasis, but how protein metabolism depends on proinflammatory cytokines in this context remains unclear. Here, using the natural abundance of the stable isotopes of nitrogen as a marker of changes in protein metabolism during a randomized, double-blind, controlled clinical trial, we show that protein homeostasis is affected way faster than proinflammatory cytokines in metastatic breast cancer patients supplemented with n-3 polyunsaturated fatty acids. We provide some evidence that this response is unrelated to major changes in whole-body substrate oxidation. In addition, we demonstrate that more fatty acids were impacted by metabolic regulations than by differences in their intake levels during the supplementation. This study documents that the percentage of patients that complied with the supplementation decreased with time, making compliance assessment crucial for the kinetic analysis of the metabolic and inflammatory responses. Our results highlight the time-dependent nature of metabolic and inflammatory changes during long-chain n-3 fatty acid supplementation.
RESUMO
BACKGROUND AND AIMS: Recent evidences highlight a role of the mitochondria calcium homeostasis in the development of colorectal cancer (CRC). To overcome treatment resistance, we aimed to evaluate the role of the mitochondrial sodium-calcium-lithium exchanger (NCLX) and its targeting in CRC. We also identified curcumin as a new inhibitor of NCLX. METHODS: We examined whether curcumin and pharmacological compounds induced the inhibition of NCLX-mediated mitochondrial calcium (mtCa2+) extrusion, the role of redox metabolism in this process. We evaluated their anti-tumorigenic activity in vitro and in a xenograft mouse model. We analyzed NCLX expression and associations with survival in The Cancer Genome Atlas (TCGA) dataset and in tissue microarrays from 381 patients with microsatellite instability (MSI)-driven CRC. RESULTS: In vitro, curcumin exerted strong anti-tumoral activity through its action on NCLX with mtCa2+ and reactive oxygen species overload associated with a mitochondrial membrane depolarization, leading to reduced ATP production and apoptosis. NCLX inhibition with pharmacological and molecular approaches reproduced the effects of curcumin. NCLX inhibitors decreased CRC tumor growth in vivo. Both transcriptomic analysis of TCGA dataset and immunohistochemical analysis of tissue microarrays demonstrated that higher NCLX expression was associated with MSI status, and for the first time, NCLX expression was significantly associated with recurrence-free survival. CONCLUSIONS: Our findings highlight a novel anti-tumoral mechanism of curcumin through its action on NCLX and mitochondria calcium overload that could benefit for therapeutic schedule of patients with MSI CRC.
Assuntos
Neoplasias Colorretais , Curcumina , Instabilidade de Microssatélites , Trocador de Sódio e Cálcio , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Curcumina/farmacologia , Humanos , Camundongos , Repetições de Microssatélites , Proteínas Mitocondriais/metabolismo , Trocador de Sódio e Cálcio/antagonistas & inibidoresRESUMO
BACKGROUND: Cancer cachexia is a multifactorial syndrome characterized by involuntary and pathological weight loss, mainly due to skeletal muscle wasting, resulting in a decrease in patients' quality of life, response to cancer treatments, and survival. Our objective was to investigate skeletal muscle alterations in cachectic cancer patients. METHODS: This is a prospective study of patients managed for pancreatic or colorectal cancer with an indication for systemic chemotherapy (METERMUCADIG - NCT02573974). One lumbar CT image was used to determine body composition. Patients were divided into three groups [8 noncachectic (NC), 18 with mild cachexia (MC), and 19 with severe cachexia (SC)] based on the severity of weight loss and muscle mass. For each patient, a pectoralis major muscle biopsy was collected at the time of implantable chamber placement. We used high-resolution oxygraphy to measure mitochondrial muscle oxygen consumption on permeabilized muscle fibres. We also performed optical and electron microscopy analyses, as well as gene and protein expression analyses. RESULTS: Forty-five patients were included. Patients were 67% male, aged 67 years (interquartile range, 59-77). Twenty-three (51%) and 22 (49%) patients were managed for pancreatic and colorectal cancer, respectively. Our results show a positive correlation between median myofibres area and skeletal muscle index (P = 0.0007). Cancer cachexia was associated with a decrease in MAFbx protein expression (P < 0.01), a marker of proteolysis through the ubiquitin-proteasome pathway. Mitochondrial oxygen consumption related to energy wasting was significantly increased (SC vs. NC, P = 0.028) and mitochondrial area tended to increase (SC vs. MC, P = 0.056) in SC patients. On the contrary, mitochondria content and networks remain unaltered in cachectic cancer patients. Finally, our results show no dysfunction in lipid storage and endoplasmic reticulum homeostasis. CONCLUSIONS: This clinical protocol brings unique data that provide new insight to mechanisms underlying muscle wasting in cancer cachexia. We report for the first time an increase in mitochondrial energy wasting in the skeletal muscle of severe cachectic cancer patients. Additional clinical studies are essential to further the exploring and understanding of these alterations.
Assuntos
Neoplasias Colorretais , Neoplasias Gastrointestinais , Idoso , Caquexia/patologia , Neoplasias Colorretais/patologia , Feminino , Neoplasias Gastrointestinais/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Atrofia Muscular/metabolismo , Músculos Peitorais/metabolismo , Músculos Peitorais/patologia , Estudos Prospectivos , Qualidade de Vida , Redução de PesoRESUMO
Despite improvements in therapeutic strategies for treating breast cancers, tumor relapse and chemoresistance remain major issues in patient outcomes. Indeed, cancer cells display a metabolic plasticity allowing a quick adaptation to the tumoral microenvironment and to cellular stresses induced by chemotherapy. Recently, long non-coding RNA molecules (lncRNAs) have emerged as important regulators of cellular metabolic orientation. In the present study, we addressed the role of the long non-coding RNA molecule (lncRNA) SAMMSON on the metabolic reprogramming and chemoresistance of MCF-7 breast cancer cells resistant to doxorubicin (MCF-7dox). Our results showed an overexpression of SAMMSON in MCF-7dox compared to doxorubicin-sensitive cells (MCF-7). Silencing of SAMMSON expression by siRNA in MCF-7dox cells resulted in a metabolic rewiring with improvement of oxidative metabolism, decreased mitochondrial ROS production, increased mitochondrial replication, transcription and translation and an attenuation of chemoresistance. These results highlight the role of SAMMSON in the metabolic adaptations leading to the development of chemoresistance in breast cancer cells. Thus, targeting SAMMSON expression levels represents a promising therapeutic route to circumvent doxorubicin resistance in breast cancers.
RESUMO
Since its discovery, mitophagy has been viewed as a protective mechanism used by cancer cells to prevent the induction of mitochondrial apoptosis. Most cancer treatments directly or indirectly cause mitochondrial dysfunction in order to trigger signals for cell death. Elimination of these dysfunctional mitochondria by mitophagy could thus prevent the initiation of the apoptotic cascade. In breast cancer patients, resistance to doxorubicin (DOX), one of the most widely used cancer drugs, is an important cause of poor clinical outcomes. However, the role played by mitophagy in the context of DOX resistance in breast cancer cells is not well understood. We therefore tried to determine whether an increase in mitophagic flux was associated with the resistance of breast cancer cells to DOX. Our first objective was to explore whether DOX-resistant breast cancer cells were characterized by conditions that favor mitophagy induction. We next tried to determine whether mitophagic flux was increased in DOX-resistant cells in response to DOX treatment. For this purpose, the parental (MCF-7) and DOX-resistant (MCF-7dox) breast cancer cell lines were used. Our results show that mitochondrial reactive oxygen species (ROS) production and hypoxia-inducible factor-1 alpha (HIF-1 alpha) expression are higher in MCF-7dox in a basal condition compared to MCF-7, suggesting DOX-resistant breast cancer cells are prone to stimuli to induce a mitophagy-related event. Our results also showed that, in response to DOX, autophagolysosome formation is induced in DOX-resistant breast cancer cells. This mitophagic step following DOX treatment seems to be partly due to mitochondrial ROS production as autophagolysosome formation is moderately decreased by the mitochondrial antioxidant mitoTEMPO.
Assuntos
Neoplasias da Mama/fisiopatologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Lisossomos , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Doxorrubicina/uso terapêutico , Feminino , Humanos , Células MCF-7 , Mitocôndrias/metabolismoRESUMO
White adipose tissue interacts closely with breast cancers through the secretion of soluble factors such as cytokines, growth factors or fatty acids. However, the molecular mechanisms of these interactions and their roles in cancer progression remain poorly understood. In this study, we investigated the role of fatty acids in the cooperation between adipocytes and breast cancer cells using a co-culture model. We report that adipocytes increase autophagy in breast cancer cells through the acidification of lysosomes, leading to cancer cell survival in nutrient-deprived conditions and to cancer cell migration. Mechanistically, the disturbance of membrane phospholipid composition with a decrease in arachidonic acid content is responsible for autophagy activation in breast cancer cells induced by adipocytes. Therefore, autophagy might be a central cellular mechanism of white adipose tissue interactions with cancer cells and thus participate in cancer progression.
RESUMO
Environment surrounding tumours are now recognized to play an important role in tumour development and progression. Among the cells found in the tumour environment, adipocytes from adipose tissue establish a vicious cycle with cancer cells to promote cancer survival, proliferation, metastasis and treatment resistance. This cycle is particularly of interest in the context of obesity, which has been found as a cancer risk factor. Cancers cells can reprogram adipocyte physiology leading to an "activated" phenotype characterized by delipidation and secretion of inflammatory adipokines. The adipocyte secretions then influence tumour growth and metastasis which has been mainly attributed to interleukin 6 (IL-6) or leptin but also to the release of fatty acids which are able to change cancer cell metabolism and signalling pathways. The aim of this review is to report recent advances in the understanding of the molecular mechanisms linking adipose tissue with cancer progression in order to propose new therapeutic strategies based on pharmacological or nutritional intervention.
Assuntos
Tecido Adiposo , Neoplasias , Adipócitos , Adipocinas , Humanos , Obesidade , Transdução de SinaisRESUMO
Cardiolipins (CLs) are specific phospholipids of the mitochondria composing about 20% of the inner mitochondria membrane (IMM) phospholipid mass. Dysregulation of CL metabolism has been observed in several types of cancer. In most cases, the evidence for a role for CL in cancer is merely correlative, suggestive, ambiguous, and cancer-type dependent. In addition, CLs could play a pivotal role in several mitochondrial functions/parameters such as bioenergetics, dynamics, mitophagy, and apoptosis, which are involved in key steps of cancer aggressiveness (i.e., migration/invasion and resistance to treatment). Therefore, this review focuses on studies suggesting that changes in CL content and/or composition, as well as CL metabolism enzyme levels, may be linked with the progression and the aggressiveness of some types of cancer. Finally, we also introduce the main mitochondrial function in which CL could play a pivotal role with a special focus on its implication in cancer development and therapy.
Assuntos
Cardiolipinas/metabolismo , Metabolismo Energético , Mitocôndrias/patologia , Neoplasias/patologia , Estresse Oxidativo , Animais , Humanos , Mitocôndrias/metabolismo , Mitofagia , Neoplasias/metabolismoRESUMO
Research investigators have shown a growing interest in investigating alterations underlying skeletal muscle wasting in patients with cancer. However, skeletal muscle dysfunctions associated with cancer cachexia have mainly been studied in preclinical models. In the present review, we summarize the results of clinical studies in which skeletal muscle biopsies were collected from cachectic vs. non-cachectic cancer patients. Most of these studies suggest the presence of significant physiological alterations in skeletal muscle from cachectic cancer patients. We suggest a hypothesis, which connects structural and metabolic parameters that may, at least in part, be responsible for the skeletal muscle atrophy characteristic of cancer cachexia. Finally, we discuss the importance of a better standardization of the diagnostic criteria for cancer cachexia, as well as the requirement for additional clinical studies to improve the robustness of these conclusions.
Assuntos
Caquexia , Neoplasias , Caquexia/diagnóstico , Caquexia/etiologia , Caquexia/patologia , Humanos , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Neoplasias/complicações , Neoplasias/patologiaRESUMO
BACKGROUND: Changes in skeletal muscle mass (SMM), total adipose tissue mass (TAT) or bone mineral density (BMD) have been described in patients with cancer undergoing various treatments; simultaneous variations of all 3 tissues has not been reported. METHODS: Data were prospectively collected in a clinical study (NCT00489697) including patients with liver metastases of colorectal cancer who received 4 cycles of bevacizumab in combination with cytotoxic chemotherapy. Computerized tomography (CT) at baseline and after chemotherapy was used to quantify skeletal muscle and adipose tissue cross-sectional areas, and mean lumbar spine BMD using validated approaches. RESULTS: After exclusion of patients lacking adequate CT images or missing data, 72 subjects were included. Patients were 63% male, aged 63.2 ± 10.3 years, 100% had liver metastases and 54%, 24% and 22% respectively has 0, 1 and ≥2 extrahepatic metastases. 100% tolerated 4 cycles of treatment and none showed progressive disease at the end of treatment. The scan interval was 70 days (95% CI, 62.3 to 80.5). Thresholds for loss of tissue were defined as loss ≥ measurement error. 10% of patients showed no loss of any tissue and a further 43% lost one tissue (SMM, TAT or BMD); 47% of patients lost 2 tissues (16.5% lost SMM + TAT, 8% lost SMM + BMD, 10% lost TAT + BMD) or all 3 tissues (12.5%). Catabolic behavior (2 or 3 tissue loss vs 0 or 1 tissue loss) associated with disease burden, including unresectable primary tumor (p = 0.010), presence of extrahepatic (EH) metastases (p = 0.039) and number of EH metastases (p = 0.004). No association was found between the number of tissues lost and treatment response, which was uniformly high, or treatment toxicity, which was uniformly low. CONCLUSION: Multiple tissues can be measured in routine CT images and these show considerable inter-individual variation. Substantial losses in some individuals appear to associate with disease burden.
Assuntos
Tecido Adiposo/diagnóstico por imagem , Antineoplásicos/efeitos adversos , Bevacizumab/efeitos adversos , Densidade Óssea/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Músculo Esquelético/diagnóstico por imagem , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Idoso , Densidade Óssea/efeitos dos fármacos , Neoplasias Colorretais/patologia , Monitoramento de Medicamentos , Feminino , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Vértebras Lombares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Resultado do Tratamento , UltrassonografiaRESUMO
Metabolic reprogramming in tumours is now recognized as a hallmark of cancer, participating both in tumour growth and cancer progression. Cancer cells develop global metabolic adaptations allowing them to survive in the low oxygen and nutrient tumour microenvironment. Among these metabolic adaptations, cancer cells use glycolysis but also mitochondrial oxidations to produce ATP and building blocks needed for their high proliferation rate. Another particular adaptation of cancer cell metabolism is the use of autophagy and specific forms of autophagy like mitophagy to recycle intracellular components in condition of metabolic stress or during anticancer treatments. The plasticity of cancer cell metabolism is a major limitation of anticancer treatments and could participate to therapy resistances. The aim of this review is to report recent advances in the understanding of the relationship between tumour metabolism and autophagy/mitophagy in order to propose new therapeutic strategies.
Assuntos
Autofagia , Mitofagia , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Reprogramação Celular , HumanosRESUMO
While tumours arise from acquired mutations in oncogenes or tumour-suppressor genes, it is clearly established that cancers are metabolic diseases characterized by metabolic alterations in tumour cells, and also non-tumour cells of the host organism resulting in tumour cachexia and patient weakness. In this review, we aimed at delineating details by which metabolic alterations in cancer cells, characterized by mitochondrial bioenergetics deregulations and the preference for aerobic glycolysis, are critical parameters controlling the aggressive progression of tumours. In particular, metabolic alteration in cancer cells are coupled to the modulation of intracellular and extracellular pH, epithelial-to-mesenchymal transition and associated increased invasiveness, autophagy, and the development of anticancer treatment resistance. Finally, based on mechanistic, pre-clinical and clinical studies, we proposed the adjuvant supplementation of dietary n-3 polyunsaturated fatty acids for a complementary holistic treatment of the cancer disease.
Assuntos
Antineoplásicos/uso terapêutico , Gorduras na Dieta/administração & dosagem , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico , Progressão da Doença , Transição Epitelial-Mesenquimal , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologiaRESUMO
BACKGROUND: We hypothesized that, among the mechanisms of drug-resistance acquired by doxorubicin (DOX)-resistant breast cancer cells to maintain cell survival, ATP-dependent drug efflux pumps could be expressed in their mitochondrial membranes and this might limit the accumulation of DOX in this subcellular compartment in relation to mitochondrial ATP production. METHODS/RESULTS: Mitochondrial DOX accumulation: the presence and the activity of mitochondrial efflux pumps and their relationship with mitochondrial ATP synthesis were analyzed in DOX-resistant (MCF-7doxR) and -sensitive (MCF-7S) breast cancer cells. Mitochondrial accumulation of DOX (autofluorescence) was decreased when ATP was produced, but only in MCF-7doxR. In these DOX-resistant cells, breast cancer resistance protein (BCRP) and multidrug resistance-associated protein (MRP1) were expressed and localized in mitochondria (confocal microscopy and confocal spectral imaging studies). In addition, mitochondrial accumulation of DOX was increased by BCRP and MRP1 inhibitors and, to a lower extent, by the mitochondrial ATP synthase inhibitor, oligomycin, in MCF-7doxR. CONCLUSIONS: Both BCRP and MRP1 were localized in mitochondria and participated to the reduction of mitochondrial accumulation of DOX in MCF-7doxR. This process was partly dependent of mitochondrial ATP synthesis. GENERAL SIGNIFICANCE: The present study provides novel insights in the involvement of mitochondria in the underlying mechanisms of DOX-resistance in breast cancer cells.
Assuntos
Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Mitocôndrias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Resistência a Múltiplos Medicamentos/fisiologia , Feminino , Humanos , Células MCF-7 , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismoRESUMO
Cardiolipin (CL) is a unique mitochondrial phospholipid potentially affecting many aspects of mitochondrial function/processes, i.e. energy production through oxidative phosphorylation. Most data focusing on implication of CL content and mitochondrial bioenergetics were performed in yeast or in cellular models of Barth syndrome. Previous work reported that increase in CL content leads to decrease in liver mitochondrial ATP synthesis yield. Therefore the aim of this study was to determine the effects of moderate decrease in CL content on mitochondrial bioenergetics in human hepatocytes. For this purpose, we generated a cardiolipin synthase knockdown (shCLS) in HepaRG hepatoma cells showing bioenergetics features similar to primary human hepatocytes. shCLS cells exhibited a 55% reduction in CLS gene and a 40% decrease in protein expression resulting in a 45% lower content in CL compared to control (shCTL) cells. Oxygen consumption was significantly reduced in shCLS cells compared to shCTL regardless of substrate used and energy state analyzed. Mitochondrial low molecular weight supercomplex content was higher in shCLS cells (+60%) compared to shCTL. Significant fragmentation of the mitochondrial network was observed in shCLS cells compared to shCTL cells. Surprisingly, mitochondrial ATP synthesis was unchanged in shCLS compared to shCTL cells but exhibited a higher ATP:O ratio (+46%) in shCLS cells. Our results suggest that lowered respiratory chain activity induced by moderate reduction in CL content may be due to both destabilization of supercomplexes and mitochondrial network fragmentation. In addition, CL content may regulate mitochondrial ATP synthesis yield.
Assuntos
Trifosfato de Adenosina/biossíntese , Cardiolipinas/análise , Transporte de Elétrons , Hepatócitos/metabolismo , Células Cultivadas , Metabolismo Energético , Humanos , Mitocôndrias/metabolismoRESUMO
Cardiolipin (CL) content accumulation leads to an increase in energy wasting in liver mitochondria in a rat model of cancer cachexia in which tumor necrosis factor alpha (TNFα) is highly expressed. In this study we investigated the mechanisms involved in liver mitochondria CL accumulation in cancer cachexia and examined if TNFα was involved in this process leading to mitochondrial bioenergetics alterations. We studied gene, protein expression and activity of the main enzymes involved in CL metabolism in liver mitochondria from a rat model of cancer cachexia and in HepaRG hepatocyte-like cells exposed to 20 ng/ml of TNFα for 12 h. Phosphatidylglycerolphosphate synthase (PGPS) gene expression was increased 2.3-fold (p<0.02) and cardiolipin synthase (CLS) activity decreased 44% (p<0.03) in cachectic rat livers compared to controls. CL remodeling enzymes monolysocardiolipin acyltransferase (MLCL AT-1) activity and tafazzin (TAZ) gene expression were increased 30% (p<0.01) and 50% (p<0.02), respectively, in cachectic rat livers compared to controls. Incubation of hepatocytes with TNFα increased CL content 15% (p<0.05), mitochondrial oxygen consumption 33% (p<0.05), PGPS gene expression 44% (p<0.05) and MLCL AT-1 activity 20% (p<0.05) compared to controls. These above findings strongly suggest that in cancer cachexia, TNFα induces a higher energy wasting in liver mitochondria by increasing CL content via upregulation of PGPS expression.
Assuntos
Caquexia/metabolismo , Cardiolipinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Hepatócitos/metabolismo , Neoplasias Peritoneais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Caquexia/genética , Caquexia/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Metabolismo Energético/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/patologia , Ratos , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
The metabolic syndrome covers metabolic abnormalities including obesity and type 2 diabetes (T2D). T2D is characterized by insulin resistance resulting from both environmental and genetic factors. A genome-wide association study (GWAS) published in 2010 identified TP53INP1 as a new T2D susceptibility locus, but a pathological mechanism was not identified. In this work, we show that mice lacking TP53INP1 are prone to redox-driven obesity and insulin resistance. Furthermore, we demonstrate that the reactive oxygen species increase in TP53INP1-deficient cells results from accumulation of defective mitochondria associated with impaired PINK/PARKIN mitophagy. This chronic oxidative stress also favors accumulation of lipid droplets. Taken together, our data provide evidence that the GWAS-identified TP53INP1 gene prevents metabolic syndrome, through a mechanism involving prevention of oxidative stress by mitochondrial homeostasis regulation. In conclusion, this study highlights TP53INP1 as a molecular regulator of redox-driven metabolic syndrome and provides a new preclinical mouse model for metabolic syndrome clinical research.
Assuntos
Síndrome Metabólica/fisiopatologia , Mitofagia , Proteínas Nucleares/metabolismo , Animais , Modelos Animais de Doenças , Resistência à Insulina , Camundongos , Proteínas Nucleares/deficiência , Obesidade , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/análiseRESUMO
Cancer-induced cachexia describes the progressive skeletal muscle wasting associated with many cancers leading to shortened survival time in cancer patients. We previously reported that cardiolipin content and energy-wasting processes were both increased in liver mitochondria in a rat model of peritoneal carcinosis (PC)-induced cachexia. To increase the understanding of the cellular biology of cancer cachexia, we investigated the involvement of adenine nucleotide translocator (ANT) in mitochondrial energy-wasting processes in liver mitochondria of PC and pair-fed control rats and its interactions with cardiolipin in isolated liver mitochondria from healthy rats exposed to cardiolipin-enriched liposomes. We showed in this study that functional ANT content was decreased in liver mitochondria from PC rats but without any effects on the efficiency of ATP synthesis. Moreover, non-phosphorylating energy wasting was not affected by saturating concentrations of carboxyatractylate (CAT), a potent inhibitor of ANT, in liver mitochondria from PC rats. Decreased efficiency of ATP synthesis was found in normal liver mitochondria exposed to cardiolipin-enriched liposomes, with increased non-phosphorylating energy wasting, thus mimicking mitochondria from PC rats. However, the functional ANT content in these cardiolipin-enriched mitochondria was unchanged, although non-phosphorylating energy wasting was reduced by CAT-induced inhibition of ANT. Finally, non-phosphorylating energy wasting was increased in cardiolipin-enriched mitochondria with substrates for complexes 1 and 2, but not for complex 4. In conclusion, increased energy wasting measured in liver mitochondria from rats with cancer cachexia is dependent on cardiolipin but independent of ANT. Interactions between ANT and cardiolipin are modified when cancer cachexia occurs.