Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Cardiovasc Res ; 2(8): 733-745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38666037

RESUMO

Recurrent myocardial ischemia can lead to left ventricular (LV) dysfunction in patients with coronary artery disease (CAD). In this observational cohort study, we assessed for chronic metabolomic and transcriptomic adaptations within LV myocardium of patients undergoing coronary artery bypass grafting. During surgery, paired transmural LV biopsies were acquired on the beating heart from regions with and without evidence of inducible ischemia on preoperative stress perfusion cardiovascular magnetic resonance. From 33 patients, 63 biopsies were acquired, compared to analysis of LV samples from 11 donor hearts. The global myocardial adenosine triphosphate (ATP):adenosine diphosphate (ADP) ratio was reduced in patients with CAD as compared to donor LV tissue, with increased expression of oxidative phosphorylation (OXPHOS) genes encoding the electron transport chain complexes across multiple cell types. Paired analyses of biopsies obtained from LV segments with or without inducible ischemia revealed no significant difference in the ATP:ADP ratio, broader metabolic profile or expression of ventricular cardiomyocyte genes implicated in OXPHOS. Differential metabolite analysis suggested dysregulation of several intermediates in patients with reduced LV ejection fraction, including succinate. Overall, our results suggest that viable myocardium in patients with stable CAD has global alterations in bioenergetic and transcriptional profile without large regional differences between areas with or without inducible ischemia.

2.
Mol Metab ; 59: 101454, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150905

RESUMO

OBJECTIVE: Metabolic syndrome, obesity, and steatosis are characterized by a range of dysregulations including defects in ubiquitin ligase tagging proteins for degradation. The identification of novel hepatic genes associated with fatty liver disease and metabolic dysregulation may be relevant to unravelling new mechanisms involved in liver disease progression METHODS: Through integrative analysis of liver transcriptomic and metabolomic obtained from obese subjects with steatosis, we identified itchy E ubiquitin protein ligase (ITCH) as a gene downregulated in human hepatic tissue in relation to steatosis grade. Wild-type or ITCH knockout mouse models of non-alcoholic fatty liver disease (NAFLD) and obesity-related hepatocellular carcinoma were analyzed to dissect the causal role of ITCH in steatosis RESULTS: We show that ITCH regulation of branched-chain amino acids (BCAAs) degradation enzymes is impaired in obese women with grade 3 compared with grade 0 steatosis, and that ITCH acts as a gatekeeper whose loss results in elevation of circulating BCAAs associated with hepatic steatosis. When ITCH expression was specifically restored in the liver of ITCH knockout mice, ACADSB mRNA and protein are restored, and BCAA levels are normalized both in liver and plasma CONCLUSIONS: Our data support a novel functional role for ITCH in the hepatic regulation of BCAA metabolism and suggest that targeting ITCH in a liver-specific manner might help delay the progression of metabolic hepatic diseases and insulin resistance.


Assuntos
Aminoácidos de Cadeia Ramificada , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Obesidade , Ubiquitina-Proteína Ligases , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Regulação para Baixo , Feminino , Humanos , Camundongos , Camundongos Knockout , Obesidade/complicações , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Microbiome ; 9(1): 104, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962692

RESUMO

BACKGROUND: The gut microbiome and iron status are known to play a role in the pathophysiology of non-alcoholic fatty liver disease (NAFLD), although their complex interaction remains unclear. RESULTS: Here, we applied an integrative systems medicine approach (faecal metagenomics, plasma and urine metabolomics, hepatic transcriptomics) in 2 well-characterised human cohorts of subjects with obesity (discovery n = 49 and validation n = 628) and an independent cohort formed by both individuals with and without obesity (n = 130), combined with in vitro and animal models. Serum ferritin levels, as a markers of liver iron stores, were positively associated with liver fat accumulation in parallel with lower gut microbial gene richness, composition and functionality. Specifically, ferritin had strong negative associations with the Pasteurellaceae, Leuconostocaceae and Micrococcaea families. It also had consistent negative associations with several Veillonella, Bifidobacterium and Lactobacillus species, but positive associations with Bacteroides and Prevotella spp. Notably, the ferritin-associated bacterial families had a strong correlation with iron-related liver genes. In addition, several bacterial functions related to iron metabolism (transport, chelation, heme and siderophore biosynthesis) and NAFLD (fatty acid and glutathione biosynthesis) were also associated with the host serum ferritin levels. This iron-related microbiome signature was linked to a transcriptomic and metabolomic signature associated to the degree of liver fat accumulation through hepatic glucose metabolism. In particular, we found a consistent association among serum ferritin, Pasteurellaceae and Micrococcacea families, bacterial functions involved in histidine transport, the host circulating histidine levels and the liver expression of GYS2 and SEC24B. Serum ferritin was also related to bacterial glycine transporters, the host glycine serum levels and the liver expression of glycine transporters. The transcriptomic findings were replicated in human primary hepatocytes, where iron supplementation also led to triglycerides accumulation and induced the expression of lipid and iron metabolism genes in synergy with palmitic acid. We further explored the direct impact of the microbiome on iron metabolism and liver fact accumulation through transplantation of faecal microbiota into recipient's mice. In line with the results in humans, transplantation from 'high ferritin donors' resulted in alterations in several genes related to iron metabolism and fatty acid accumulation in recipient's mice. CONCLUSIONS: Altogether, a significant interplay among the gut microbiome, iron status and liver fat accumulation is revealed, with potential significance for target therapies. Video abstract.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Microbioma Gastrointestinal/genética , Ferro , Camundongos , Obesidade
4.
Diabetologia ; 63(6): 1223-1235, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32173762

RESUMO

AIMS/HYPOTHESIS: Drug and surgical-based therapies in type 2 diabetes are associated with altered gut microbiota architecture. Here we investigated the role of the gut microbiome in improved glucose homeostasis following bariatric surgery. METHODS: We carried out gut microbiome analyses in gastrectomised (by vertical sleeve gastrectomy [VSG]) rats of the Goto-Kakizaki (GK) non-obese model of spontaneously occurring type 2 diabetes, followed by physiological studies in the GK rat. RESULTS: VSG in the GK rat led to permanent improvement of glucose tolerance associated with minor changes in the gut microbiome, mostly characterised by significant enrichment of caecal Prevotella copri. Gut microbiota enrichment with P. copri in GK rats through permissive antibiotic treatment, inoculation of gut microbiota isolated from gastrectomised GK rats, and direct inoculation of P. copri, resulted in significant improvement of glucose tolerance, independent of changes in body weight. Plasma bile acids were increased in GK rats following inoculation with P. copri and P. copri-enriched microbiota from VSG-treated rats; the inoculated GK rats then showed increased liver glycogen and upregulated expression of Fxr (also known as Nr1h4), Srebf1c, Chrebp (also known as Mlxipl) and Il10 and downregulated expression of Cyp7a1. CONCLUSIONS: Our data underline the impact of intestinal P. copri on improved glucose homeostasis through enhanced bile acid metabolism and farnesoid X receptor (FXR) signalling, which may represent a promising opportunity for novel type 2 diabetes therapeutics.


Assuntos
Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal/fisiologia , Prevotella/fisiologia , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Masculino , Ratos , Transdução de Sinais/fisiologia
5.
Clin Nutr ; 39(11): 3408-3418, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32199697

RESUMO

BACKGROUND & AIMS: Atherosclerosis is characterized by an inflammatory disease linked to excessive lipid accumulation in the artery wall. The Notch signalling pathway has been shown to play a key regulatory role in the regulation of inflammation. Recently, in vitro and pre-clinical studies have shown that apolipoprotein A-I binding protein (AIBP) regulates cholesterol metabolism (SREBP) and NOTCH signalling (haematopoiesis) and may be protective against atherosclerosis, but the evidence in humans is scarce. METHODS: We evaluated the APOA1bp-SREBF-NOTCH axis in association with atherosclerosis in two well-characterized cohorts of morbidly obese patients (n = 78) within the FLORINASH study, including liver transcriptomics, 1H NMR plasma metabolomics, high-resolution ultrasonography evaluating carotid intima-media thickness (cIMT), and haematological parameters. RESULTS: The liver expression levels of APOA1bp were associated with lower cIMT and leukocyte counts, a better plasma lipid profile and higher circulating levels of metabolites associated with lower risk of atherosclerosis (glycine, histidine and asparagine). Conversely, liver SREBF and NOTCH mRNAs were positively associated with atherosclerosis, liver steatosis, an unfavourable lipid profile, higher leukocytes and increased levels of metabolites linked to inflammation and CVD such as branched-chain amino acids and glycoproteins. APOA1bp and NOTCH signalling also had a strong association, as revealed by the negative correlations among APOA1bp expression levels and those of all NOTCH receptors and jagged ligands. CONCLUSIONS: We here provide the first evidence in human liver of the putative APOA1bp-SREBF-NOTCH axis signalling pathway and its association with atherosclerosis and inflammation.


Assuntos
Aterosclerose/etiologia , Obesidade Mórbida/genética , Racemases e Epimerases/metabolismo , Receptores Notch/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Adulto , Asparagina/metabolismo , Biópsia , Espessura Intima-Media Carotídea , Estudos Transversais , Feminino , Glicina/metabolismo , Histidina/metabolismo , Humanos , Inflamação , Fígado/metabolismo , Masculino , Metaboloma , Pessoa de Meia-Idade , Obesidade Mórbida/complicações , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Transcriptoma , Adulto Jovem
6.
Toxicol Sci ; 132(1): 8-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22843567

RESUMO

We used the recently introduced "metabolomics-on-a-chip" approach to test secondary drug toxicity in bioartificial organs. Bioartificial organs cultivated in microfluidic culture conditions provide a beneficial environment, in which the cellular cytoprotective mechanisms are enhanced, compared with Petri dish culture conditions. We investigated the metabolic response of HepG2/C3a cells exposed to flutamide, an anticancer prodrug, and hydroxyflutamide (HF), its active metabolite, in a microfluidic biochip. The cellular response was analyzed by (1)H nuclear magnetic resonance spectroscopy to identify cell-specific molecule-response markers. The metabolic response to flutamide results in a disruption of glucose homeostasis and in mitochondrial dysfunctions. This flutamide-specific metabolic response was illustrated by a reduction of the extracellular glucose and fructose consumptions and a general reduction of the tricarboxylic acid cycle activity leading to the reduction of the consumption of several amino acids. We also found a higher production of 3-hydroxybutyrate and lactate, and the reduction of the albumin production compared with controls. The toxic metabolic signature associated with the active metabolite HF was illustrated by a high-energy demand and an increase in several amino acid metabolism. Finally, for both molecules, the hepatotoxicity was correlated to the glutathione (GSH) metabolism illustrated by the levels of the 2-hydroxybutyrate and pyroglutamate productions and the increase of the glutamate and glycine productions. Thus, the entire set of results contributed to extract specific mechanistic toxic signatures and their relation to hepatotoxicity, which appeared consistent with literature reports. As new finding of HepG2/C3a cells hepatotoxicity, we propose a metabolic network with a related list of metabolite variations to describe the GSH depletion when followed by a cell death for the HepG2/C3a cells cultivated in our polydimethylsiloxane microfluidic biochips. Our findings illustrate the potential of metabolomics-on-a-chip as an in vitro alternative method for predictive toxicology.


Assuntos
Antineoplásicos/toxicidade , Flutamida/análogos & derivados , Flutamida/toxicidade , Dispositivos Lab-On-A-Chip , Fígado/efeitos dos fármacos , Metabolômica , Microfluídica/instrumentação , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Espectroscopia de Ressonância Magnética
7.
Mol Biosyst ; 8(7): 1908-20, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22618574

RESUMO

In vitro microfluidic systems are increasingly used as an alternative to standard Petri dishes in bioengineering and metabolomic investigations, as they are expected to provide cellular environments close to the in vivo conditions. In this work, we combined the recently developed "metabolomics-on-a-chip" approach with metabolic flux analysis to model the metabolic network of the hepatoma HepG2/C3A cell line and to infer the distribution of intracellular metabolic fluxes in standard Petri dishes and microfluidic biochips. A high pyruvate reduction to lactate was observed in both systems, suggesting that the cells operate in oxygen-limited environments. Our results also indicate that HepG2/C3A cells in the biochip are characterized by a higher consumption rate of oxygen, presumably due to a higher oxygenation rate in the microfluidic environment. This leads to a higher entry of the ultimate glycolytic product, acetyl-CoA, into the Krebs cycle. These findings are supported by the transcriptional activity of HepG2/C3A cells in both systems since we observed that genes regulated by a HIF-1 (hypoxia-regulated factor-1) transcriptional factor were over expressed under the Petri conditions, but to a lesser extent in the biochip.


Assuntos
Carcinoma Hepatocelular/metabolismo , Redes e Vias Metabólicas , Metabolômica , Técnicas Analíticas Microfluídicas , Proteínas de Neoplasias/metabolismo , Linhagem Celular , Respiração Celular , Ciclo do Ácido Cítrico , Metabolismo Energético , Glicólise , Células Hep G2/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ácido Láctico/metabolismo , Proteínas Mitocondriais , Proteínas de Neoplasias/genética , Ressonância Magnética Nuclear Biomolecular , Oxigênio , Via de Pentose Fosfato , Ácido Pirúvico/metabolismo
8.
Toxicol Appl Pharmacol ; 259(3): 270-80, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22230336

RESUMO

We have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treated biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Benzoquinonas/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Iminas/toxicidade , Técnicas Analíticas Microfluídicas/métodos , Acetaminofen/metabolismo , Analgésicos não Narcóticos/metabolismo , Benzoquinonas/metabolismo , Citoproteção , Perfilação da Expressão Gênica/métodos , Células Hep G2 , Humanos , Iminas/metabolismo , Metabolômica/métodos , Estresse Oxidativo , Proteômica/métodos
9.
Anal Chem ; 84(4): 1840-8, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22242722

RESUMO

The world faces complex challenges for chemical hazard assessment. Microfluidic bioartificial organs enable the spatial and temporal control of cell growth and biochemistry, critical for organ-specific metabolic functions and particularly relevant to testing the metabolic dose-response signatures associated with both pharmaceutical and environmental toxicity. Here we present an approach combining a microfluidic system with (1)H NMR-based metabolomic footprinting, as a high-throughput small-molecule screening approach. We characterized the toxicity of several molecules: ammonia (NH(3)), an environmental pollutant leading to metabolic acidosis and liver and kidney toxicity; dimethylsulfoxide (DMSO), a free radical-scavenging solvent; and N-acetyl-para-aminophenol (APAP, or paracetamol), a hepatotoxic analgesic drug. We report organ-specific NH(3) dose-dependent metabolic responses in several microfluidic bioartificial organs (liver, kidney, and cocultures), as well as predictive (99% accuracy for NH(3) and 94% for APAP) compound-specific signatures. Our integration of microtechnology, cell culture in microfluidic biochips, and metabolic profiling opens the development of so-called "metabolomics-on-a-chip" assays in pharmaceutical and environmental toxicology.


Assuntos
Acetaminofen/toxicidade , Amônia/toxicidade , Órgãos Bioartificiais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Metabolômica , Microfluídica/instrumentação , Microfluídica/métodos , Analgésicos não Narcóticos/toxicidade , Animais , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas , Cães , Células Hep G2 , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Curva ROC
10.
Aging Cell ; 10(1): 39-54, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21040400

RESUMO

Dietary restriction (DR) is the most universal intervention known to extend animal lifespan. DR also prevents tumor development in mammals, and this effect requires the tumor suppressor PTEN. However, the metabolic and cellular processes that underly the beneficial effects of DR are poorly understood. We identified slcf-1 in an RNAi screen for genes that extend Caenorhabditis elegans lifespan in a PTEN/daf-18-dependent manner. We showed that slcf-1 mutation, which increases average lifespan by 40%, mimics DR in worms fed ad libitum. An NMR-based metabolomic characterization of slcf-1 mutants revealed lower lipid levels compared to wild-type animals, as expected for dietary-restricted animals, but also higher pyruvate content. Epistasis experiments and metabolic measurements support a model in which the long lifespan of slcf-1 mutants relies on increased mitochondrial pyruvate metabolism coupled to an adaptive response to oxidative stress. This response requires DAF-18/PTEN and the previously identified DR effectors PHA-4/FOXA, HSF-1/HSF1, SIR-2.1/SIRT-1, and AMPK/AAK-2. Overall, our data show that pyruvate homeostasis plays a central role in lifespan control in C. elegans and that the beneficial effects of DR results from a hormetic mechanism involving the mitochondria. Analysis of the SLCF-1 protein sequence predicts that slcf-1 encodes a plasma membrane transporter belonging to the conserved monocarboxylate transporter family. These findings suggest that inhibition of this transporter homolog in mammals might also promote a DR response.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Longevidade/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Mutação/fisiologia , Ácido Pirúvico , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Restrição Calórica , Epistasia Genética/fisiologia , Ensaios de Triagem em Larga Escala , Metabolismo/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Estresse Oxidativo , PTEN Fosfo-Hidrolase/fisiologia , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Int J Epidemiol ; 33(5): 1092-102, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15256525

RESUMO

BACKGROUND: Concomitant parasitic infections are common in the developing world, yet most studies focus on a single parasite in a narrow age group. We investigated the extent of polyparasitism and parasite associations, and related these findings to self-reported morbidity. METHODS: Inhabitants of 75 randomly selected households from a single village in western Côte d'Ivoire provided multiple faecal specimens and a single finger prick blood sample. The Kato-Katz technique and a formol-ether concentration method were employed to screen faecal samples for Schistosoma mansoni, soil-transmitted helminths and intestinal protozoa. Giemsa-stained blood smears were analysed for malaria parasites. A questionnaire was administered for collection of demographic information and self-reported morbidity indicators. RESULTS: Complete parasitological data were obtained for 500/561 (89.1%) participants, similarly distributed among sex, with an age range from 5 days to 91 years. The prevalences of Plasmodium falciparum, hookworms, Entamoeba histolytica/E. dispar, and S. mansoni were 76.4%, 45.0%, 42.2%, and 39.8%, respectively. Three-quarters of the population harboured three or more parasites concurrently. Multivariate analysis revealed significant associations between several pairs of parasites. Some parasitic infections and the total number of parasites were significantly associated with self-reported morbidity indicators. CONCLUSIONS: Our data confirm that polyparasitism is very common in rural Côte d'Ivoire and that people have clear perceptions about the morbidity caused by some of these parasitic infections. Our findings can be used for the design and implementation of sound intervention strategies to mitigate morbidity and co-morbidity.


Assuntos
Países em Desenvolvimento , Doenças Parasitárias/epidemiologia , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Comorbidade , Côte d'Ivoire/epidemiologia , Estudos Transversais , Feminino , Indicadores Básicos de Saúde , Humanos , Lactente , Recém-Nascido , Enteropatias Parasitárias/epidemiologia , Malária/epidemiologia , Masculino , Pessoa de Meia-Idade , Cooperação do Paciente , Infecções por Protozoários/epidemiologia , Saúde da População Rural , Esquistossomose mansoni/epidemiologia , Distribuição por Sexo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA