Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 59(1): 311-322, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335079

RESUMO

BACKGROUND: The choice between different diffusion-weighted imaging (DWI) techniques is difficult as each comes with tradeoffs for efficient clinical routine imaging and apparent diffusion coefficient (ADC) accuracy. PURPOSE: To quantify signal-to-noise-ratio (SNR) efficiency, ADC accuracy, artifacts, and distortions for different DWI acquisition techniques, coils, and scanners. STUDY TYPE: Phantom, in vivo intraindividual biomarker accuracy between DWI techniques and independent ratings. POPULATION/PHANTOMS: NIST diffusion phantom. 51 Patients: 40 with prostate cancer and 11 with head-and-neck cancer at 1.5 T FIELD STRENGTH/SEQUENCE: Echo planar imaging (EPI): 1.5 T and 3 T Siemens; 3 T Philips. Distortion-reducing: RESOLVE (1.5 and 3 T Siemens); Turbo Spin Echo (TSE)-SPLICE (3 T Philips). Small field-of-view (FOV): ZoomitPro (1.5 T Siemens); IRIS (3 T Philips). Head-and-neck and flexible coils. ASSESSMENT: SNR Efficiency, geometrical distortions, and susceptibility artifacts were quantified for different b-values in a phantom. ADC accuracy/agreement was quantified in phantom and for 51 patients. In vivo image quality was independently rated by four experts. STATISTICAL TESTS: QIBA methodology for accuracy: trueness, repeatability, reproducibility, Bland-Altman 95% Limits-of-Agreement (LOA) for ADC. Wilcoxon Signed-Rank and student tests on P < 0.05 level. RESULTS: The ZoomitPro small FOV sequence improved b-image efficiency by 8%-14%, reduced artifacts and observer scoring for most raters at the cost of smaller FOV compared to EPI. The TSE-SPLICE technique reduced artifacts almost completely at a 24% efficiency cost compared to EPI for b-values ≤500 sec/mm2 . Phantom ADC 95% LOA trueness were within ±0.03 × 10-3 mm2 /sec except for small FOV IRIS. The in vivo ADC agreement between techniques, however, resulted in 95% LOAs in the order of ±0.3 × 10-3 mm2 /sec with up to 0.2 × 10-3 mm2 /sec of bias. DATA CONCLUSION: ZoomitPro for Siemens and TSE SPLICE for Philips resulted in a trade-off between efficiency and artifacts. Phantom ADC quality control largely underestimated in vivo accuracy: significant ADC bias and variability was found between techniques in vivo. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Cabeça , Pescoço , Masculino , Humanos , Reprodutibilidade dos Testes , Imagens de Fantasmas , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos
2.
Curr Biol ; 33(16): 3522-3528.e7, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37516114

RESUMO

Cytoplasmic linker-associated proteins (CLASPs) form a conserved family of microtubule-associated proteins (MAPs) that maintain microtubules in a growing state by promoting rescue while suppressing catastrophe.1 CLASP function involves an ordered array of tumor overexpressed gene (TOG) domains and binding to multiple protein partners via a conserved C-terminal domain (CTD).2,3 In migrating cells, CLASPs concentrate at the cortex near focal adhesions as part of cortical microtubule stabilization complexes (CMSCs), via binding of their CTD to the focal adhesion protein PHLDB2/LL5ß.4,5 Cortical CLASPs also stabilize a subset of microtubules, which stimulate focal adhesion turnover and generate a polarized microtubule network toward the leading edge of migrating cells. CLASPs are also recruited to the trans-Golgi network (TGN) via an interaction between their CTD and the Golgin protein GCC185.6 This allows microtubule growth toward the leading edge of migrating cells, which is required for Golgi organization, polarized intracellular transport, and cell motility.7 In dividing cells, CLASPs are essential at kinetochores for efficient chromosome segregation and anaphase spindle integrity.8,9 Both CENP-E and ASTRIN bind and target CLASPs to kinetochores,10,11 although the CLASP domain required for this interaction is not known. Despite its high evolutionary conservation, the CTD remains structurally uncharacterized. Here, we find that the CTD can be structurally modeled as a TOG domain. We identify a surface-exposed and conserved arginine residue essential for CLASP CTD interaction with partner proteins. Together, our results provide a structural mechanism by which the CLASP CTD directs diverse sub-cellular localizations throughout the cell cycle.


Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Movimento Celular , Cinetocoros/metabolismo , Rede trans-Golgi/metabolismo
3.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36944420

RESUMO

The oocyte must grow and mature before fertilization, thanks to a close dialogue with the somatic cells that surround it. Part of this communication is through filopodia-like protrusions, called transzonal projections (TZPs), sent by the somatic cells to the oocyte membrane. To investigate the contribution of TZPs to oocyte quality, we impaired their structure by generating a full knockout mouse of the TZP structural component myosin-X (MYO10). Using spinning disk and super-resolution microscopy combined with a machine-learning approach to phenotype oocyte morphology, we show that the lack of Myo10 decreases TZP density during oocyte growth. Reduction in TZPs does not prevent oocyte growth but impairs oocyte-matrix integrity. Importantly, we reveal by transcriptomic analysis that gene expression is altered in TZP-deprived oocytes and that oocyte maturation and subsequent early embryonic development are partially affected, effectively reducing mouse fertility. We propose that TZPs play a role in the structural integrity of the germline-somatic complex, which is essential for regulating gene expression in the oocyte and thus its developmental potential.


Assuntos
Folículo Ovariano , Pseudópodes , Feminino , Animais , Camundongos , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Oogênese/fisiologia , Células Germinativas , Miosinas
4.
Brain Topogr ; 33(4): 533-544, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32303949

RESUMO

The optic radiations (OR) are white matter tracts forming the posterior part of the visual ways. As an important inter-individual variability exists, atlases may be inefficient to locate the OR in a given subject. We designed a fully automatic method to delimitate the OR on a magnetic resonance imaging using tractography. On 15 healthy subjects, we evaluated the validity of our method by comparing the outputs to the Jülich post-mortem histological atlas, and its reproducibility. We also evaluated its feasibility on 98 multiple sclerosis (MS) patients. We correlated different visual outcomes with the inflammatory lesions volume within the OR reconstructed with different methods (our method, atlas, TractSeg). Our method reconstructed the OR bundle in all healthy subjects (< 2 h for most of them), and was reproducible. It demonstrated good classification indexes: sensitivity up to 0.996, specificity up to 0.993, Dice coefficient up to 0.842, and an area under the receiver operating characteristic (ROC) curve of 0.981. Our method reconstructed the OR in 91 of the 98 MS patients (92.9%, < 6 h for most of patients). Compared to an atlas-based approach and the TractSeg method, the inflammatory lesions volume in the OR measured with our method better correlated with the visual cortex volume, visual acuity and mean peripapillar retinal nerve fiber layer thickness. Our method seems to be efficient to reconstruct the OR in healthy subjects, and seems applicable to MS patients. It may be more relevant than an atlas based approach.


Assuntos
Esclerose Múltipla , Vias Visuais , Automação , Humanos , Esclerose Múltipla/diagnóstico por imagem , Fibras Nervosas , Reprodutibilidade dos Testes , Vias Visuais/diagnóstico por imagem
5.
Dev Cell ; 50(3): 355-366.e6, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31303441

RESUMO

Centrosomes, the predominant sites of microtubule nucleation and anchorage, coordinate spindle assembly and cell division in animal cells. At the onset of mitosis, centrioles accumulate microtubule-organizing pericentriolar material (PCM) in a process termed centrosome maturation. To what extent centrosome maturation depends on the continued activity of mitotic regulators or the presence of centrioles has hitherto been unclear. Using the C. elegans early embryo, we show that PCM expansion requires the Polo-like kinase PLK-1 and CEP192 (SPD-2 in C. elegans), but not its upstream regulator Aurora A (AIR-1), while maintenance of the PCM polymer depends exclusively on PLK-1. SPD-2 and PLK-1 are highly concentrated at centrioles. Unexpectedly, laser microsurgery reveals that while centrioles are required for PCM recruitment and centrosome structural integrity they are dispensable for PCM maintenance. We propose a model whereby centrioles promote centrosome maturation by recruiting PLK-1, but subsequent maintenance occurs via PLK-1 acting directly within the PCM.


Assuntos
Centríolos/metabolismo , Mitose , Animais , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Drosophila melanogaster , Células HeLa , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
6.
Elife ; 72018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30547880

RESUMO

Accurate chromosome segregation relies on bioriented amphitelic attachments of chromosomes to microtubules of the mitotic spindle, in which sister chromatids are connected to opposite spindle poles. BUB-1 is a protein of the Spindle Assembly Checkpoint (SAC) that coordinates chromosome attachment with anaphase onset. BUB-1 is also required for accurate sister chromatid segregation independently of its SAC function, but the underlying mechanism remains unclear. Here we show that, in Caenorhabditis elegans embryos, BUB-1 accelerates the establishment of non-merotelic end-on kinetochore-microtubule attachments by recruiting the RZZ complex and its downstream partner dynein-dynactin at the kinetochore. In parallel, BUB-1 limits attachment maturation by the SKA complex. This activity opposes kinetochore-microtubule attachment stabilisation promoted by CLS-2CLASP-dependent kinetochore-microtubule assembly. BUB-1 is therefore a SAC component that coordinates the function of multiple downstream kinetochore-associated proteins to ensure accurate chromosome segregation.


Assuntos
Anáfase , Proteínas de Caenorhabditis elegans/genética , Segregação de Cromossomos , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Serina-Treonina Quinases/genética , Fuso Acromático/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Complexo Dinactina/genética , Complexo Dinactina/metabolismo , Dineínas/genética , Dineínas/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica , Cinetocoros/ultraestrutura , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fuso Acromático/ultraestrutura
7.
EMBO Rep ; 19(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29632243

RESUMO

Cenp-F is a multifaceted protein implicated in cancer and developmental pathologies. The Cenp-F C-terminal region contains overlapping binding sites for numerous proteins that contribute to its functions throughout the cell cycle. Here, we focus on the nuclear pore protein Nup133 that interacts with Cenp-F both at nuclear pores in prophase and at kinetochores in mitosis, and on the kinase Bub1, known to contribute to Cenp-F targeting to kinetochores. By combining in silico structural modeling and yeast two-hybrid assays, we generate an interaction model between a conserved helix within the Nup133 ß-propeller and a short leucine zipper-containing dimeric segment of Cenp-F. We thereby create mutants affecting the Nup133/Cenp-F interface and show that they prevent Cenp-F localization to the nuclear envelope, but not to kinetochores. Conversely, a point mutation within an adjacent leucine zipper affecting the kinetochore targeting of Cenp-F KT-core domain impairs its interaction with Bub1, but not with Nup133, identifying Bub1 as the direct KT-core binding partner of Cenp-F. Finally, we show that Cenp-E redundantly contributes together with Bub1 to the recruitment of Cenp-F to kinetochores.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Antígenos de Histocompatibilidade Menor/genética , Mitose , Membrana Nuclear/metabolismo , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética
8.
Am J Hum Genet ; 101(6): 1006-1012, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29198720

RESUMO

Leber congenital amaurosis (LCA) is a neurodegenerative disease of photoreceptor cells that causes blindness within the first year of life. It occasionally occurs in syndromic metabolic diseases and plurisystemic ciliopathies. Using exome sequencing in a multiplex family and three simplex case subjects with an atypical association of LCA with early-onset hearing loss, we identified two heterozygous mutations affecting Arg391 in ß-tubulin 4B isotype-encoding (TUBB4B). Inspection of the atomic structure of the microtubule (MT) protofilament reveals that the ß-tubulin Arg391 residue contributes to a binding pocket that interacts with α-tubulin contained in the longitudinally adjacent αß-heterodimer, consistent with a role in maintaining MT stability. Functional analysis in cultured cells overexpressing FLAG-tagged wild-type or mutant TUBB4B as well as in primary skin-derived fibroblasts showed that the mutant TUBB4B is able to fold, form αß-heterodimers, and co-assemble into the endogenous MT lattice. However, the dynamics of growing MTs were consistently altered, showing that the mutations have a significant dampening impact on normal MT growth. Our findings provide a link between sensorineural disease and anomalies in MT behavior and describe a syndromic LCA unrelated to ciliary dysfunction.


Assuntos
Amaurose Congênita de Leber/genética , Microtúbulos/genética , Tubulina (Proteína)/genética , Adulto , Sítios de Ligação/genética , Células Cultivadas , Criança , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Microtúbulos/metabolismo , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Células Fotorreceptoras/metabolismo , Tubulina (Proteína)/metabolismo , Sequenciamento do Exoma
9.
Nat Commun ; 8(1): 1499, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29133801

RESUMO

During cell division, spindle microtubules ensure an equal repartition of chromosomes between the two daughter cells. While the kinetochore-dependent mechanisms that drive mitotic chromosome segregation are well understood, in oocytes of most species atypical spindles assembled in absence of centrosomes entail poorly understood mechanisms of chromosome segregation. In particular, the structure(s) responsible for force generation during meiotic chromosome separation in oocytes is unclear. Using quantitative light microscopy, electron tomography, laser-mediated ablation, and genetic perturbations in the Caenorhabditis elegans oocyte, we studied the mechanism of chromosome segregation in meiosis. We find spindle poles are largely dispensable, and in fact act as brakes for chromosome segregation. Instead, our results suggest that CLS-2-dependent microtubules of the meiotic central spindle, located between the segregating chromosomes and aligned along the axis of segregation, are essential. Our results support a model in which inter-chromosomal microtubules of the central spindle push chromosomes apart during meiotic anaphase in oocytes.


Assuntos
Caenorhabditis elegans/genética , Segregação de Cromossomos , Microtúbulos , Oócitos/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dineínas/metabolismo , Feminino , Cinetocoros , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático
10.
Dev Cell ; 43(2): 157-171.e7, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29065307

RESUMO

In animal cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Whereas mitotic kinases have been implicated in NEBD, how they coordinate their activity to trigger this event is unclear. Here, we show that both in human cells and Caenorhabditis elegans, the Polo-like kinase 1 (PLK-1) is recruited to the nuclear pore complexes, just prior to NEBD, through its Polo-box domain (PBD). We provide evidence that PLK-1 localization to the nuclear envelope (NE) is required for efficient NEBD. We identify the central channel nucleoporins NPP-1/Nup58, NPP-4/Nup54, and NPP-11/Nup62 as the critical factors anchoring PLK-1 to the NE in C. elegans. In particular, NPP-1, NPP-4, and NPP-11 primed at multiple Polo-docking sites by Cdk1 and PLK-1 itself physically interact with the PLK-1 PBD. We conclude that nucleoporins play an unanticipated regulatory role in NEBD, by recruiting PLK-1 to the NE thereby facilitating phosphorylation of critical downstream targets.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose/fisiologia , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Células HeLa , Humanos , Membrana Nuclear/genética , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
11.
Eur Radiol ; 27(9): 3733-3743, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28210799

RESUMO

OBJECTIVES: To determine the diagnostic accuracy of pharmacokinetic parameters measured by dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in predicting the response of brain metastases to antineoplastic therapy in patients with lung cancer. METHODS: Forty-four consecutive patients with lung cancer, harbouring 123 newly diagnosed brain metastases prospectively underwent conventional 3-T MRI at baseline (within 1 month before treatment), during the early (7-10 weeks) and midterm (5-7 months) post-treatment period. An additional DCE MRI sequence was performed during baseline and early post-treatment MRI to evaluate baseline pharmacokinetic parameters (K trans, k ep, v e, v p) and their early variation (∆K trans, ∆k ep, ∆v e, ∆v p). The objective response was judged by the volume variation of each metastasis from baseline to midterm MRI. ROC curve analysis determined the best DCE MRI parameter to predict the objective response. RESULTS: Baseline DCE MRI parameters were not associated with the objective response. Early ∆K trans, ∆v e and ∆v p were significantly associated with the objective response (p = 0.02, p = 0.001 and p = 0.02, respectively). The best predictor of objective response was ∆v e with an area under the curve of 0.93 [95% CI = 0.87, 0.99]. CONCLUSIONS: DCE MRI and early ∆v e may be a useful tool to predict the objective response of brain metastases in patients with lung cancer. KEY POINTS: • DCE MRI could predict the response of brain metastases from lung cancer • ∆v e was the best predictor of response • DCE MRI could be used to individualize patients' follow-up.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Pulmonares/patologia , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Neoplasias Encefálicas/secundário , Meios de Contraste/farmacocinética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Curva ROC
12.
BMC Evol Biol ; 16: 176, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27586247

RESUMO

BACKGROUND: Multiple animal species exhibit morphological asymmetries in male genitalia. In insects, left-right genital asymmetries evolved many times independently and have been proposed to appear in response to changes in mating position. However, little is known about the relationship between mating position and the interaction of male and female genitalia during mating, and functional analyses of asymmetric morphologies in genitalia are virtually non-existent. We investigated the relationship between mating position, asymmetric genital morphology and genital coupling in the fruit fly Drosophila pachea, in which males possess an asymmetric pair of external genital lobes and mate in an unusual right-sided position on top of the female. RESULTS: We examined D. pachea copulation by video recording and by scanning electron microscopy of genital complexes. We observed that the interlocking of male and female genital organs in D. pachea is remarkably different from genital coupling in the well-studied D. melanogaster. In D. pachea, the female oviscapt valves are asymmetrically twisted during copulation. The male's asymmetric lobes tightly grasp the female's abdomen in an asymmetric 'locking' position, with the left and right lobes contacting different female structures. The male anal plates, which grasp the female genitalia in D. melanogaster, do not contact the female in D. pachea. Experimental lobe amputation by micro-surgery and laser-ablation of lobe bristles led to aberrant coupling of genitalia and variable mating positions, in which the male was tilted towards the right side of the female. CONCLUSION: We describe, for the first time, how the mating position depends on coupling of male and female genitalia in a species with asymmetric genitalia and one-sided mating position. Our results show that D. pachea asymmetric epandrial lobes do not act as a compensatory mechanism for the change from symmetric to one-sided mating position that occurred during evolution of D. pachea's ancestors, but as holding devices with distinct specialized functions on the left and right sides.


Assuntos
Drosophila/anatomia & histologia , Drosophila/fisiologia , Genitália Feminina/anatomia & histologia , Genitália Masculina/anatomia & histologia , Comportamento Sexual Animal/fisiologia , Abdome/anatomia & histologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Copulação/fisiologia , Drosophila/ultraestrutura , Feminino , Genitália Feminina/ultraestrutura , Genitália Masculina/ultraestrutura , Masculino , Mutação/genética , Reprodução , Fatores de Tempo
13.
Development ; 143(19): 3604-3614, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27578779

RESUMO

In most animals, female meiotic spindles are assembled in the absence of centrosomes. How microtubules (MTs) are organized into acentrosomal meiotic spindles is poorly understood. In Caenorhabditis elegans, assembly of female meiotic spindles requires MEI-1 and MEI-2, which constitute the microtubule-severing AAA+ ATPase Katanin. However, the role of MEI-2 is not known and whether MT severing is required for meiotic spindle assembly is unclear. Here, we show that the essential role of MEI-2 is to confer MT binding to Katanin, which in turn stimulates the ATPase activity of MEI-1, leading to MT severing. To test directly the contribution of MT severing to meiotic spindle assembly, we engineered Katanin variants that retained MT binding and MT bundling activities but that were inactive for MT severing. In vivo analysis of these variants showed disorganized microtubules that lacked focused spindle poles reminiscent of the Katanin loss-of-function phenotype, demonstrating that the MT-severing activity is essential for meiotic spindle assembly in C. elegans Overall, our results reveal the essential role of MEI-2 and provide the first direct evidence supporting an essential role of MT severing in meiotic spindle assembly in C. elegans.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Adenosina Trifosfatases/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Feminino , Katanina , Meiose/genética , Meiose/fisiologia , Microtúbulos/genética , Fuso Acromático/genética
14.
Mol Biol Cell ; 27(9): 1479-87, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26985017

RESUMO

Microtubules (MTs) are cytoskeletal polymers that participate in diverse cellular functions, including cell division, intracellular trafficking, and templating of cilia and flagella. MTs undergo dynamic instability, alternating between growth and shortening via catastrophe and rescue events. The rates and frequencies of MT dynamic parameters appear to be characteristic for a given cell type. We recently reported that all MT dynamic parameters vary throughout differentiation of a smooth muscle cell type in intact Caenorhabditis elegans. Here we describe local differences in MT dynamics and a novel MT behavior: an abrupt change in growth rate (deceleration) of single MTs occurring in the cell periphery of these cells. MT deceleration occurs where there is a decrease in local soluble tubulin concentration at the cell periphery. This local regulation of tubulin concentration and MT deceleration are dependent on two novel homologues of human cylicin. These novel ORFs, which we name cylc-1 and -2, share sequence homology with stathmins and encode small, very basic proteins containing several KKD/E repeats. The TOG domain-containing protein ZYG-9(TOGp) is responsible for the faster polymerization rate within the cell body. Thus we have defined two contributors to the molecular regulation for this novel MT behavior.


Assuntos
Microtúbulos/metabolismo , Microtúbulos/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Ciclinas/metabolismo , Desaceleração , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Modelos Moleculares , Polimerização , Estatmina , Tubulina (Proteína)/metabolismo
15.
J Cell Biol ; 202(3): 431-9, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23918937

RESUMO

Katanin is an evolutionarily conserved microtubule (MT)-severing complex implicated in multiple aspects of MT dynamics. In Caenorhabditis elegans, the katanin homologue MEI-1 is required for meiosis, but must be inactivated before mitosis. Here we show that PPFR-1, a regulatory subunit of a trimeric protein phosphatase 4 complex, enhanced katanin MT-severing activity during C. elegans meiosis. Loss of ppfr-1, similarly to the inactivation of MT severing, caused a specific defect in meiosis II spindle disassembly. We show that a fraction of PPFR-1 was degraded after meiosis, contributing to katanin inactivation. PPFR-1 interacted with MEL-26, the substrate recognition subunit of the CUL-3 RING E3 ligase (CRL3(MEL-26)), which also targeted MEI-1 for post-meiotic degradation. Reversible protein phosphorylation of MEI-1 may ensure temporal activation of the katanin complex during meiosis, whereas CRL3(MEL-26)-mediated degradation of both MEI-1 and its activator PPFR-1 ensure efficient katanin inactivation in the transition to mitosis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Caenorhabditis elegans/genética , Katanina , Complexos Multiproteicos/metabolismo , Fosforilação
16.
J Cell Biol ; 169(2): 227-31, 2005 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-15837801

RESUMO

Vertebrate oocytes arrest in metaphase of the second meiotic division (MII), where they maintain a high cdc2/cyclin B activity and a stable, bipolar spindle because of cytostatic factor (CSF) activity. The Mos-MAPK pathway is essential for establishing CSF. Indeed, oocytes from the mos-/- strain do not arrest in MII and activate without fertilization, as do Xenopus laevis oocytes injected with morpholino oligonucleotides directed against Mos. In Xenopus oocytes, p90Rsk (ribosomal S6 kinase), a MAPK substrate, is the main mediator of CSF activity. We show here that this is not the case in mouse oocytes. The injection of constitutively active mutant forms of Rsk1 and Rsk2 does not induce a cell cycle arrest in two-cell mouse embryos. Moreover, these two mutant forms do not restore MII arrest after their injection into mos-/- oocytes. Eventually, oocytes from the triple Rsk (1, 2, 3) knockout present a normal CSF arrest. We demonstrate that p90Rsk is not involved in the MII arrest of mouse oocytes.


Assuntos
Blastômeros/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Meiose/fisiologia , Oócitos/fisiologia , Proteínas Proto-Oncogênicas c-mos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Feminino , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Gravidez , Proteínas Proto-Oncogênicas c-mos/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA