RESUMO
Protein abundance in cereal grains is determined by the relative rates of protein synthesis and protein degradation during grain development but quantitation of these rates is lacking. Through combining in vivo stable isotope labelling and in-depth quantitative proteomics, we have measured the turnover of 1400 different types of proteins during wheat grain development. We demonstrate that there is a spatiotemporal pattern to protein turnover rates which explain part of the variation in protein abundances that is not attributable to differences in wheat gene expression. We show that c. 20% of total grain adenosine triphosphate (ATP) production is used for grain proteome biogenesis and maintenance, and nearly half of this budget is invested exclusively in storage protein synthesis. We calculate that 25% of newly synthesized storage proteins are turned over during grain development rather than stored. This approach to measure protein turnover rates at proteome scale reveals how different functional categories of grain proteins accumulate, calculates the costs of protein turnover during wheat grain development and identifies the most and the least stable proteins in the developing wheat grain.
Assuntos
Proteínas de Plantas , Triticum , Grão Comestível/genética , Proteínas de Plantas/metabolismo , Proteólise , Proteoma/metabolismo , Proteômica , Triticum/metabolismoRESUMO
Determining which proteins are actively synthesized at a given point in time and extracting a representative sample for analysis is important to understand plant responses. Here we show that the methionine (Met) analogue homopropargylglycine (HPG) enables Bio-Orthogonal Non-Canonical Amino acid Tagging (BONCAT) of a small sample of the proteins being synthesized in Arabidopsis plants or cell cultures, facilitating their click-chemistry enrichment for analysis. The sites of HPG incorporation could be confirmed by peptide mass spectrometry at Met sites throughout protein amino acid sequences and correlation with independent studies of protein labelling with 15 N verified the data. We provide evidence that HPG-based BONCAT tags a better sample of nascent plant proteins than azidohomoalanine (AHA)-based BONCAT in Arabidopsis and show that the AHA induction of Met metabolism and greater inhibition of cell growth rate than HPG probably limits AHA incorporation at Met sites in Arabidopsis. We show HPG-based BONCAT provides a verifiable method for sampling, which plant proteins are being synthesized at a given time point and enriches a small portion of new protein molecules from the bulk protein pool for identification, quantitation and subsequent biochemical analysis. Enriched nascent polypeptides samples were found to contain significantly fewer common post-translationally modified residues than the same proteins from whole plant extracts, providing evidence for age-related accumulation of post-translational modifications in plants.
Assuntos
Alcinos/química , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/isolamento & purificação , Arabidopsis/química , Glicina/análogos & derivados , Proteômica/métodos , Alanina/análogos & derivados , Alanina/química , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ontologia Genética , Glicina/química , Espectrometria de Massas , Metionina/química , Metionina/metabolismo , Isótopos de Nitrogênio/química , Células Vegetais , Processamento de Proteína Pós-TraducionalRESUMO
Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements. Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop.
Assuntos
Mapeamento de Sequências Contíguas/métodos , Genoma de Planta , Anotação de Sequência Molecular/métodos , Proteínas de Plantas/genética , Translocação Genética , Triticum/genética , Algoritmos , Mapeamento de Sequências Contíguas/normas , Anotação de Sequência Molecular/normas , Polimorfismo Genético , PoliploidiaRESUMO
Mitochondria are the sites of a diverse set of essential biochemical processes in plants. In order to facilitate the analysis of these functions, this chapter presents protocols for the isolation of intact mitochondria from a range of plant tissues as well two workflows for fractionation into their four subcompartments; the inner and outer membranes and the two aqueous compartments, the inter membrane space and matrix. Protocols for the assessment of mitochondrial integrity and purity through enzymatic function and suggestions of commercially available compartment marker antibodies are provided.
Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Fracionamento Celular/métodos , Membranas Intracelulares/química , Mitocôndrias/química , Peroxissomos/química , Protoplastos/química , Aconitato Hidratase/química , Biomarcadores/química , Catalase/química , Fracionamento Celular/instrumentação , Centrifugação com Gradiente de Concentração/instrumentação , Centrifugação com Gradiente de Concentração/métodos , Meios de Cultura/química , Ensaios Enzimáticos , Fumarato Hidratase/química , Membranas Intracelulares/ultraestrutura , Cinética , Mitocôndrias/ultraestrutura , Peroxissomos/ultraestrutura , Fosfotransferases (Aceptor do Grupo Álcool)/química , Povidona/química , Protoplastos/ultraestrutura , Dióxido de Silício/químicaRESUMO
At12Cys-1 (At5g64400) and At12Cys-2 (At5g09570) are two closely related isogenes that encode small, twin cysteine proteins, typically located in mitochondria. At12Cys-2 transcript is induced in a variety of mutants with disrupted mitochondrial proteins, but an increase in At12Cys protein is only detected in mutants with reduced mitochondrial complex I abundance. Induction of At12Cys protein in mutants that lack mitochondrial complex I is accompanied by At12Cys protein located in mitochondria, chloroplasts, and the cytosol. Biochemical analyses revealed that even single gene deletions, i.e., At12cys-1 or At12cys-2, have an effect on mitochondrial and chloroplast functions. However, only double mutants, i.e., At12cys-1:At12cys-2, affect the abundance of protein and mRNA transcripts encoding translation elongation factors as well as rRNA abundance. Blue native PAGE showed that At12Cys co-migrated with mitochondrial supercomplex I + III. Likewise, deletion of both At12cys-1 and At12cys-2 genes, but not single gene deletions, results in enhanced tolerance to drought and light stress and increased anti-oxidant capacity. The induction and multiple localization of At12Cys upon a reduction in complex I abundance provides a mechanism to specifically signal mitochondrial dysfunction to the cytosol and then beyond to other organelles in the cell.
Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Citosol/metabolismo , Complexo I de Transporte de Elétrons/genética , Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Transdução de SinaisRESUMO
The majority of mitochondrial proteins are encoded in the nuclear genome and imported into mitochondria posttranslationally from the cytosol. An N-terminal presequence functions as the signal for the import of mitochondrial proteins. However, the functional information in the presequence remains elusive. This study reports the identification of critical sequence motifs from the presequence of Arabidopsis thaliana F1-ATPase γ-subunit (pFAγ). pFAγ was divided into six 10-amino acid segments, designated P1 to P6 from the N to the C terminus, each of which was further divided into two 5-amino acid subdivisions. These P segments and their subdivisions were substituted with Ala residues and fused to green fluorescent protein (GFP). Protoplast targeting experiments using these GFP constructs revealed that pFAγ contains several functional sequence motifs that are dispersed throughout the presequence. The sequence motifs DQEEG (P4a) and VVRNR (P5b) were involved in translocation across the mitochondrial membranes. The sequence motifs IAARP (P2b) and IAAIR (P3a) participated in binding to mitochondria. The sequence motifs RLLPS (P2a) and SISTQ (P5a) assisted in pulling proteins into the matrix, and the sequence motif IAARP (P2b) functioned in Tom20-dependent import. In addition, these sequence motifs exhibit complex relationships, including synergistic functions. Thus, multiple sequence motifs dispersed throughout the presequence are proposed to function cooperatively during protein import into mitochondria.
Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Mitocôndrias/enzimologia , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Immunoblotting , Imuno-Histoquímica , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , ATPases Translocadoras de Prótons/genéticaRESUMO
A variety of approaches were used to predict dual-targeted proteins in Arabidopsis thaliana. These predictions were experimentally tested using GFP fusions. Twelve new dual-targeted proteins were identified: five that were dual-targeted to mitochondria and plastids, six that were dual-targeted to mitochondria and peroxisomes, and one that was dual-targeted to mitochondria and the nucleus. Two methods to predict dual-targeted proteins had a high success rate: (1) combining the AraPerox database with a variety of subcellular prediction programs to identify mitochondrial- and peroxisomal-targeted proteins, and (2) using a variety of prediction programs on a biochemical pathway or process known to contain at least one dual-targeted protein. Several technical parameters need to be taken into account before assigning subcellular localization using GFP fusion proteins. The position of GFP with respect to the tagged polypeptide, the tissue or cells used to detect subcellular localization, and the portion of a candidate protein fused to GFP are all relevant to the expression and targeting of a fusion protein. Testing all gene models for a chromosomal locus is required if more than one model exists.