Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2886, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190616

RESUMO

In our search for novel small molecules activating procaspase-3, we have designed and synthesized two series of novel (E)-N'-arylidene-2-(2-oxoindolin-1-yl)acetohydrazides (4) and (Z)-2-(5-substituted-2-oxoindolin-1-yl)-N'-(2-oxoindolin-3-ylidene)acetohydrazides (5). Cytotoxic evaluation revealed that the compounds showed notable cytotoxicity toward three human cancer cell lines: colon cancer SW620, prostate cancer PC-3, and lung cancer NCI-H23. Especially, six compounds, including 4f-h and 4n-p, exhibited cytotoxicity equal or superior to positive control PAC-1, the first procaspase-3 activating compound. The most potent compound 4o was three- to five-fold more cytotoxic than PAC-1 in three cancer cell lines tested. Analysis of compounds effects on cell cycle and apoptosis demonstrated that the representative compounds 4f, 4h, 4n, 4o and 4p (especially 4o) accumulated U937 cells in S phase and substantially induced late cellular apoptosis. The results show that compound 4o would serve as a template for further design and development of novel anticancer agents.


Assuntos
Antineoplásicos , Desenho de Fármacos , Ativadores de Enzimas , Hidrazinas/síntese química , Hidrazinas/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Neoplasias Pulmonares/patologia , Masculino , Neoplasias da Próstata/patologia
2.
Arch Pharm (Weinheim) ; 355(1): e2100216, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34674294

RESUMO

In our continuing search for novel small-molecule anticancer agents, we designed and synthesized a series of novel (E)-N'-(3-allyl-2-hydroxy)benzylidene-2-(4-oxoquinazolin-3(4H)-yl)acetohydrazides (5), focusing on the modification of substitution in the quinazolin-4(3H)-one moiety. The biological evaluation showed that all 13 designed and synthesized compounds displayed significant cytotoxicity against three human cancer cell lines (SW620, colon cancer; PC-3, prostate cancer; NCI-H23, lung cancer). The most potent compound 5l displayed cytotoxicity up to 213-fold more potent than 5-fluorouracil and 87-fold more potent than PAC-1, the first procaspase-activating compound. Structure-activity relationship analysis revealed that substitution of either electron-withdrawing or electron-releasing groups at positions 6 or 7 on the quinazolin-4(3H)-4-one moiety increased the cytotoxicity of the compounds, but substitution at position 6 seemed to be more favorable. In the caspase activation assay, compound 5l was found to activate the caspase activity by 291% in comparison to PAC-1, which was used as a control. Further docking simulation also revealed that this compound may be a potent allosteric inhibitor of procaspase-3 through chelation of the inhibitory zinc ion. Physicochemical and ADMET calculations for 5l provided useful information of its suitable absorption profile and some toxicological effects that need further optimization to be developed as a promising anticancer agent.


Assuntos
Antineoplásicos/farmacologia , Compostos de Benzilideno/farmacologia , Hidrazinas/farmacologia , Quinolonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/química , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Fluoruracila/farmacologia , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Simulação de Acoplamento Molecular , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade
3.
ACS Omega ; 6(7): 4907-4920, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33644598

RESUMO

Two series of novel 4-oxoquinazoline-based N-hydroxypropenamides (9a-m and 10a-m) were designed, synthesized, and evaluated for their inhibitory and cytotoxicity activities against histone deacetylase (HDAC). The compounds showed good to potent HDAC inhibitory activity and cytotoxicity against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung cancer). In this series, compounds with the N-hydroxypropenamide functionality impeded at position 7 on the 4-oxoquinazoline skeleton (10a-m) were generally more potent than compounds with the N-hydroxypropenamide moiety at position 6 (9a-m). Also, the N 3-benzyl-substituted derivatives (9h-m, 10h-m) exhibited stronger bioactivity than the N 3-alkyl-substituted ones (9a-e, 10a-e). Two compounds 10l and 10m were the most potent ones. Their HDAC inhibitory activity (IC50 values, 0.041-0.044 µM) and cytotoxicity (IC50 values, 0.671-1.211 µM) were approximately 2- to 3-fold more potent than suberoylanilide hydroxamic acid (SAHA). Some compounds showed up to 10-fold more potent HDAC6 inhibition compared to their inhibitory activity in total HDAC extract assay. Analysis of selected compounds 10l and 10m revealed that these compounds strongly induced both early and late apoptosis and arrested SW620 cells at the G2/M phase. Docking studies were carried out on the HDAC6 isoform for series 10a-m and revealed some important features contributing to the inhibitory activity of synthesized compounds.

4.
Med Chem ; 14(8): 831-850, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29807520

RESUMO

BACKGROUND: Histone deacetylases (HDAC) enzymes are emerging as potential targets for cancer treatments. In this study, several series of novel hydroxamic acids incorporating 1-((1H- 1,2,3-triazol-4-yl)methyl)-3-substituted-2-oxoindolines were explored. METHODS: The compounds were designed using Autodock Vina program, then synthesized and evaluated in vitro and in silico for their inhibitory activity against HDACs. The cytotoxicity was measured by SRB method. The enzyme inhibitory effects of the compounds were evaluated by the fluorescent assay. RESULTS: Biological evaluation showed that these hydroxamic acids were generally cytotoxic against four human cancer cell lines (SW620, colon; PC-3, prostate; AsPC-1, pancreas; NCI-H23, lung). Several compounds, e.g. 7g, 11c, and 11g, displayed up to 10-fold more potent than SAHA (suberoylanilide hydroxamic acid, vorinostat) in term of cytotoxicity. The synthesized compounds were also comparably potent to SAHA in inhibiting HDAC2. In particular, compound 11c displayed potential inhibitory effects against HDAC1, HDAC2, HDAC6, and HDAC8 with comparable or slightly higher potency than SAHA. Docking results on four class I and IIB isoenzymes indicated that these compounds tightly bound to HDACs at the active site with binding affinities much higher than that of SAHA. Finally, chemo-informatics approaches were employed to assess the pharmacokinetic and toxicity profiles of 7g and 11c. We identified degradation via phase II metabolism and toxicity two of the most serious problems that need further optimization. CONCLUSION: Taking altogether our findings are encouraging and current hydroxamate derivatives are worth being considered as potential HDAC inhibitors and could be useful for further research on the development of new anti-cancer agents.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Domínio Catalítico , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Indóis/síntese química , Indóis/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Vorinostat/farmacologia
5.
Med Chem ; 11(8): 725-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26133355

RESUMO

Histone deacetylases (HDAC) are currently a group of validated targets for anticancer drug discovery and development. In our research program to find novel small molecules targeting these enzymes, we designed and synthesized two series of 3-hydroxyimino-2-oxoindoline- and 3- methoxyimino-2-oxoindoline-based N-hydroxypropenamides (3a-g, 6a-g). The results show that these propenamides potently inhibited HDAC2 with IC50 values in sub-micromolar range, approximately 10-fold lower than that of SAHA (also known as suberoylanilohydroxamic acid). Evaluation of cytotoxicity of these compounds in three human cancer cell lines revealed that most of the synthesized compounds were up to 5-fold more cytotoxic than SAHA. Docking studies showed that the compounds bound to HDAC2 at the binding site with higher binding affinities compared to SAHA. Our present results demonstrate that these novel 3-substituted-2-oxoindoline-based N-hydroxypropenamides are potential for further development as anticancer agents.


Assuntos
Acrilamidas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Indóis/química , Indóis/farmacologia , Acrilamidas/síntese química , Acrilamidas/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/síntese química , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA