Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 601(17): 3885-3903, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37531448

RESUMO

In males, the factors that decrease limb muscle mass and strength in response to androgen deprivation are largely unknown. Sirtuin1 (SIRT1) protein levels are lower in the limb muscle of male mice subjected to androgen deprivation. The present study aimed to assess whether SIRT1 induction preserved limb muscle mass and force production in response to androgen deprivation. Physically mature male mice containing an inducible muscle-specific SIRT1 transgene were subjected to a sham or castration surgery and compared to sham and castrated male mice where the SIRT1 transgene was not induced. SIRT1 induction partially preserved whole-body lean mass, tibialis anterior (TA) mass and triceps surae muscle mass in response to castration. Further analysis of the TA muscle showed that muscle-specific SIRT1 induction partially preserved limb muscle soluble protein content and fibre cross-sectional area. Unilateral AAV9-mediated SIRT1 induction in the TA muscle showed that SIRT1 partially preserved mass by acting directly in the muscle. Despite those positive outcomes to limb muscle morphology, muscle-specific SIRT1 induction did not preserve the force generating capacity of the TA or triceps surae muscles. Interestingly, SIRT1 induction in females did not alter limb muscle mass or limb muscle strength even though females have naturally low androgen levels. SIRT1 also did not alter the androgen-mediated increase in limb muscle mass or strength in females. In all, these data suggest that decreases in SIRT1 protein in the limb muscle of males may partially contribute to the loss of limb muscle mass in response to androgen deprivation. KEY POINTS: SIRT1 induction in skeletal muscle of male mice subjected to androgen deprivation partially preserved limb muscle mass and fibre cross-sectional area. SIRT1 induction in skeletal muscle of male mice subjected to androgen deprivation did not prevent preserve limb muscle force generating capacity. SIRT1 induction in skeletal muscle of females did not alter baseline limb muscle mass, nor did it affect the androgen-mediated increase in limb muscle mass.


Assuntos
Androgênios , Neoplasias da Próstata , Sirtuína 1 , Animais , Masculino , Camundongos , Antagonistas de Androgênios/metabolismo , Androgênios/farmacologia , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Neoplasias da Próstata/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
2.
J Appl Physiol (1985) ; 132(1): 58-72, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762526

RESUMO

Cancer cachexia (CC) results in impaired muscle function and quality of life and is the primary cause of death for ∼20%-30% of patients with cancer. We demonstrated mitochondrial degeneration as a precursor to CC in male mice; however, whether such alterations occur in females is currently unknown. The purpose of this study was to elucidate muscle alterations in CC development in female tumor-bearing mice. Sixty female C57BL/6J mice were injected with PBS or Lewis lung carcinoma at 8 wk of age, and tumors developed for 1, 2, 3, or 4 wk to assess the time course of cachectic development. In vivo muscle contractile function, protein fractional synthetic rate (FSR), protein turnover, and mitochondrial health were assessed. Three- and four-week tumor-bearing mice displayed a dichotomy in tumor growth and were reassigned to high tumor (HT) and low tumor (LT) groups. HT mice exhibited lower soleus, tibialis anterior, and fat weights than PBS mice. HT mice showed lower peak isometric torque and slower one-half relaxation time than PBS mice. HT mice had lower FSR than PBS mice, whereas E3 ubiquitin ligases were greater in HT than in other groups. Bnip3 (mitophagy) and pMitoTimer red puncta (mitochondrial degeneration) were greater in HT mice, whereas Pgc1α1 and Tfam (mitochondrial biogenesis) were lower in HT mice than in PBS mice. We demonstrate alterations in female tumor-bearing mice where HT exhibited greater protein degradation, impaired muscle contractility, and mitochondrial degeneration compared with other groups. Our data provide novel evidence for a distinct cachectic development in tumor-bearing female mice compared with previous male studies.NEW & NOTEWORTHY Our study demonstrates divergent tumor development and tissue wasting within 3- and 4-wk mice, where approximately half the mice developed large tumors and subsequent cachexia. Unlike previous male studies, where metabolic perturbations precede the onset of cachexia, females appear to exhibit protections from the metabolic perturbations and cachexia development. Our data provide novel evidence for divergent cachectic development in tumor-bearing female mice compared with previous male CC studies, suggesting different mechanisms of CC between sexes.


Assuntos
Caquexia , Neoplasias , Animais , Caquexia/etiologia , Caquexia/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Neoplasias/patologia , Qualidade de Vida
3.
Exp Physiol ; 106(12): 2472-2488, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34569104

RESUMO

NEW FINDINGS: What is the central question of this study? Is the oestrous cycle affected during disuse atrophies and, if so, how are oestrous cycle changes related to musculoskeletal outcomes? What is the main finding and its importance? Rodent oestrous cycles were altered during disuse atrophy, which was correlated with musculoskeletal outcomes. However, the oestrous cycle did not appear to be changed by Lewis lung carcinoma, which resulted in no differences in muscle size in comparison to healthy control animals. These findings suggest a relationship between the oestrous cycle and muscle size during atrophic pathologies. ABSTRACT: Recent efforts have focused on improving our understanding of female muscle physiology during exposure to muscle atrophic stimuli. A key feature of female rodent physiology is the oestrous cycle. However, it is not known how such stimuli interact with the oestrous cycle to influence muscle health. In this study, we investigated the impact of muscle atrophic stimuli on the oestrous cycle and how these alterations are correlated with musculoskeletal outcomes. A series of experiments were performed in female rodents, including hindlimb unloading (HU), HU followed by 24 h of reloading, HU combined with dexamethasone treatment, and Lewis lung carcinoma. The oestrous cycle phase was assessed throughout each intervention and correlated with musculoskeletal outcomes. Seven or 14 days of HU increased the duration in dioestrus or metoestrus (D/M; low hormones) and was negatively correlated with gastrocnemius mass. Time spent in D/M was also negatively correlated with changes in grip strength and bone density after HU, and with muscle recovery 24 h after the cessation of HU. The addition of dexamethasone strengthened these relationships between time in D/M and reduced musculoskeletal outcomes. However, in animals with Lewis lung carcinoma, oestrous cyclicity did not differ from that of control animals, and time spent in D/M was not correlated with either gastrocnemius mass or tumour burden. In vitro experiments suggested that enhanced protein synthesis induced by estrogen might protect against muscle atrophy. In conclusion, muscle atrophic insults are correlated with changes in the oestrous cycle, which are associated with deterioration in musculoskeletal outcomes. The magnitude of oestrous cycle alterations depends on the atrophic stimuli.


Assuntos
Transtornos Musculares Atróficos , Roedores , Animais , Feminino , Elevação dos Membros Posteriores/fisiologia , Músculo Esquelético/fisiologia , Atrofia Muscular/patologia , Transtornos Musculares Atróficos/metabolismo , Transtornos Musculares Atróficos/patologia
4.
J Cachexia Sarcopenia Muscle ; 12(6): 2056-2068, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34585846

RESUMO

BACKGROUND: Disuse decreases muscle size and is predictive of mortality across multiple pathologies. Detriments to mitochondrial function are hypothesized to underlie disuse-induced muscle atrophy. Little data exist on early mechanisms contributing to onset of these pathologies, nor is it known how they differ between sexes. The purpose of this study was to examine differential and conserved responses to mitochondrial quality control in male and female mice during the development and progression of disuse-induced atrophy. METHODS: One hundred C57BL/6J mice (50 male and 50 female) were hindlimb unloaded to induce disuse atrophy for 0 (con), 24, 48, 72, or 168 h. At designated time-points, extensor digitorum longus, gastrocnemius, and soleus muscles were collected for analysis of mitochondrial quality control markers. RESULTS: One hundred sixty-eight hours of disuse resulted in ~25% lower oxidative muscle fibre CSA in both male (P = 0.003) and female (P = 0.02) mice without any differences due to disuse in glycolytic fibres. In male mice, 48 h of unloading was sufficient to result in ~67% greater mitochondrial oxidative stress as assessed by the reporter gene pMitoTimer compared with 0 h (P = 0.002), this mitochondrial stress preceded detectable muscle loss. However in female mice, mitochondrial oxidative stress did not occur until 168 h of disuse (~40% greater mitochondrial oxidative stress in 168 h compared with 0 h of disuse, P < 0.0001). Blunted oxidative stress in female mice appeared to coincide with greater inductions of autophagy and mitophagy in female mice (~3-fold greater BNIP3 and ~6-fold greater LC3II/I ratio P < 0.0001 and P = 0.038 respectively). Male mice overall had greater reactive oxygen species (ROS) production compared with female mice. Female mice had a greater induction of ROS within 24 h of disuse (~4-fold greater compared with 0 h, P < 0.0001); whereas male mice did not have greater ROS production until 168 h of disuse (~2-fold greater, P < 0.0001). Although all muscle types exhibited some alterations to mitochondrial quality control, such as increased markers of mitophagy and fission, the soleus muscle in both male and female mice exhibited consistent alterations to various markers of mitochondrial quality. Markers of mitochondrial translation were approximately 30-50% lower within 24 h of unloading in both male and female soleus muscle (P value ranges: <0.0001-0.03). CONCLUSIONS: Disuse negatively affects mitochondria differentially between sexes during development of muscle wasting. Acutely, female mice may forgo muscle mass to maintain mitochondrial quality compared with male mice. These differences may contribute to divergent clinical manifestations of atrophy.


Assuntos
Elevação dos Membros Posteriores , Transtornos Musculares Atróficos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias , Atrofia Muscular/etiologia
5.
Mol Cell Endocrinol ; 535: 111391, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34245847

RESUMO

Muscle mass is important for health. Decreased testicular androgen production (hypogonadism) contributes to the loss of muscle mass, with loss of limb muscle being particularly debilitating. Androgen replacement is the only pharmacological treatment, which may not be feasible for everyone. Prior work showed that markers of reactive oxygen species and markers of mitochondrial degradation pathways were higher in the limb muscle following castration. Therefore, we tested whether an antioxidant preserved limb muscle mass in male mice subjected to a castration surgery. Subsets of castrated mice were treated with resveratrol (a general antioxidant) or MitoQ (a mitochondria targeted antioxidant). Relative to the non-castrated control mice, lean mass, limb muscle mass, and grip strength were partially preserved only in castrated mice treated with MitoQ. Independent of treatment, markers of mitochondrial degradation pathways remained elevated in all castrated mice. Therefore, a mitochondrial targeted antioxidant may partially preserve limb muscle mass in response to hypogonadism.


Assuntos
Antioxidantes/administração & dosagem , Hipogonadismo/tratamento farmacológico , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/fisiologia , Compostos Organofosforados/administração & dosagem , Resveratrol/administração & dosagem , Ubiquinona/análogos & derivados , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Força da Mão , Hipogonadismo/etiologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Orquiectomia/efeitos adversos , Compostos Organofosforados/farmacologia , Resveratrol/farmacologia , Ubiquinona/administração & dosagem , Ubiquinona/farmacologia
6.
Physiol Rep ; 8(19): e14608, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33063952

RESUMO

Skeletal muscle atrophy is common across a variety of pathologies. Underlying mechanisms of atrophy differ between pathologies, and in many conditions, circulating factors are tied to muscle atrophy. Therefore, we sought to identify alterations to the plasma proteome across divergent forms of muscle atrophy, disuse and cancer cachexia, as potential mediators of atrophy. C57BL6/J mice were assigned to Lewis Lung Carcinoma (LLC)-induced cachexia, disuse by hindlimb unloading (HU), or control (CON). Plasma samples were submitted for discovery proteomics and targets of interest confirmed by immunoblot. Considerably more peptides were altered in plasma from LLC (91) than HU (9) as compared to CON. Five total proteins were similarly modulated in HU and LLC compared to CON, none reached criteria for differential expression. Serum Amyloid A1 (SAA) was 4 and 6 Log2 FC greater in LLC than CON or HU, respectively, confirmed by immunoblot. Recent reports suggest SAA is sufficient to induce atrophy via TLR. Therefore, we assessed TLR2,4, and IL-6 mRNAs in hindlimb muscles. TLR mRNAs were not altered, suggesting SAA effects on atrophy during LLC are independent of TLR signaling. However, we noted > 6-fold induction of IL-6 in soleus of HU mice, despite minimal shift in the plasma proteome, indicating potential localized inflammation in atrophying muscle. Furthermore, paraoxonase 1 (PON1) was highly repressed in LLC mice and largely undetectable by immunoblot in this group. Our data suggest SAA and PON1 as potential novel atrokines for cancer cachexia and indicate localized inflammation in atrophying muscles independent of the plasma proteome.


Assuntos
Caquexia/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Neoplasias/metabolismo , Proteômica , Animais , Caquexia/patologia , Feminino , Elevação dos Membros Posteriores/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA