Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(11): 4957-4967, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38446013

RESUMO

Electrification and clean hydrogen are promising low-carbon options for decarbonizing industrial process heat, which is an essential target for reducing sector-wide emissions. However, industrial processes with heat demand vary significantly across industries in terms of temperature requirements, capacities, and equipment, making it challenging to determine applications for low-carbon technologies that are technically and economically feasible. In this analysis, we develop a framework for evaluating life cycle emissions, water use, and cost impacts of electric and clean hydrogen process heat technologies and apply it in several case studies for plastics and petrochemical manufacturing industries in the United States. Our results show that industrial heat pumps could reduce emissions by 12-17% in a typical poly(vinyl chloride) (PVC) facility in certain locations currently, compared to conventional natural gas combustion, and that other electric technologies in PVC and ethylene production could reduce emissions by nearly 90% with a sufficiently decarbonized electric grid. Life cycle water use increases significantly in all low-carbon technology cases. The levelized cost of heat of viable low-carbon technologies ranges from 15 to 100% higher than conventional heating systems, primarily due to energy costs. We discuss results in the context of relevant policies that could be useful to manufacturing facilities and policymakers for aiding the transition to low-carbon process heat technologies.


Assuntos
Cloreto de Vinil , Estados Unidos , Temperatura Alta , Carbono , Instalações Industriais e de Manufatura , Etilenos , Hidrogênio , Água
2.
ACS Eng Au ; 2(3): 248-256, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35781934

RESUMO

The United States is unique in the energy reserves held in shale gas fields, which coproduce natural gas and natural gas liquids. Use of this resource, however, contributes to greenhouse gas emissions and, correspondingly, climate change. We explore how natural gas and natural gas liquids might build bridges toward low-carbon transportation fuels. For example, as petroleum refineries produce less gasoline in response to widespread electrification, natural gas liquids can be converted to fuel. We consider whether the greenhouse gas emissions from production and use of these fuels might be offset through three potential outcomes of converting coproduced natural gas to CO2 through steam methane reforming. First, the CO2 could be injected into conventional oil formations for enhanced oil recovery. Second, it could be sequestered into saline aquifers to avoid CO2 emissions from the produced oil combustion. Third, it could be injected into unconventional gas formations in the form of CO2-based fracturing fluids. Simultaneously, the coproduced hydrogen from steam methane reforming could be used to support the expansion of the hydrogen economy. The region of study is the Permian Basin. The results show sizeable emission benefits by decreasing net emissions of natural gas production and use to 28 from 88 g-CO2e/MJ. For revenue generating pathways, a partial decarbonization of 3.4 TCF/year is possible. All of the natural gas can be partially decarbonized if the CO2 is sequestered in saline aquifers. Overall, the results show that while greenhouse gas emissions can be reduced through decarbonization approaches relying on subsurface sequestration, full natural gas decarbonization is not achieved but must be pursued through other approaches.

3.
Biotechnol Biofuels ; 8: 178, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26543502

RESUMO

BACKGROUND: Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California's Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller's grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. RESULTS: This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol's life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits, and energy consumption for corn oil production and corn oil biodiesel production. CONCLUSIONS: This study's results demonstrate that co-product treatment methodology strongly influences corn oil biodiesel life-cycle GHG emissions and can affect how this fuel is treated under the Renewable Fuel and Low Carbon Fuel Standards.

4.
Environ Sci Technol ; 48(24): 14624-31, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25380298

RESUMO

Biomass-derived chemical products may offer reduced environmental impacts compared to their fossil-derived counterparts and could improve profit margins at biorefineries when coproduced with higher-volume, lower-profit margin biofuels. It is important to assess on a life-cycle basis the energy and environmental impacts of these bioproducts as compared to conventional, fossil-derived products. We undertook a life-cycle analysis of eight bioproducts produced from either algal-derived glycerol or corn stover-derived sugars. Selected on the basis of technology readiness and market potential, the bioproducts are propylene glycol, 1,3-propanediol, 3-hydroxypropionic acid, acrylic acid, polyethylene, succinic acid, isobutanol, and 1,4-butanediol. We developed process simulations to obtain energy and material flows in the production of each bioproduct and examined sensitivity of these flows to process design assumptions. Conversion process data for fossil-derived products were based on the literature. Conversion process data were combined with upstream parameters in the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to generate life-cycle greenhouse gas (GHG) emissions and fossil energy consumption (FEC) for each bioproduct and its corresponding petroleum-derived product. The bioproducts uniformly offer GHG emissions reductions compared to their fossil counterparts ranging from 39 to 86% on a cradle-to-grave basis. Similarly, FEC was lower for bioproducts than for conventional products.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Modelos Teóricos , Petróleo , Biomassa , Butanóis , Butileno Glicóis , Carboidratos , Meio Ambiente , Gases , Glicerol , Efeito Estufa , Ácido Láctico/análogos & derivados , Propilenoglicóis , Ácido Succínico , Meios de Transporte , Estados Unidos
5.
Biotechnol Biofuels ; 6(1): 141, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24088388

RESUMO

BACKGROUND: The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. RESULTS: Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. CONCLUSIONS: This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA's Renewable Fuel Standard program.

6.
Biotechnol Biofuels ; 6(1): 51, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23575438

RESUMO

BACKGROUND: The greenhouse gas (GHG) emissions that may accompany land-use change (LUC) from increased biofuel feedstock production are a source of debate in the discussion of drawbacks and advantages of biofuels. Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing the understanding of LUC GHG impacts associated with both corn and cellulosic ethanol will inform the on-going debate concerning their magnitudes and sources of variability. RESULTS: In our study, we estimate LUC GHG emissions for ethanol from four feedstocks: corn, corn stover, switchgrass, and miscanthus. We use new computable general equilibrium (CGE) results for worldwide LUC. U.S. domestic carbon emission factors are from state-level modelling with a surrogate CENTURY model and U.S. Forest Service data. This paper investigates the effect of several key domestic lands carbon content modelling parameters on LUC GHG emissions. International carbon emission factors are from the Woods Hole Research Center. LUC GHG emissions are calculated from these LUCs and carbon content data with Argonne National Laboratory's Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) model. Our results indicate that miscanthus and corn ethanol have the lowest (-10 g CO2e/MJ) and highest (7.6 g CO2e/MJ) LUC GHG emissions under base case modelling assumptions. The results for corn ethanol are lower than corresponding results from previous studies. Switchgrass ethanol base case results (2.8 g CO2e/MJ) were the most influenced by assumptions regarding converted forestlands and the fate of carbon in harvested wood products. They are greater than miscanthus LUC GHG emissions because switchgrass is a lower-yielding crop. Finally, LUC GHG emissions for corn stover are essentially negligible and insensitive to changes in model assumptions. CONCLUSIONS: This research provides new insight into the influence of key carbon content modelling variables on LUC GHG emissions associated with the four bioethanol pathways we examined. Our results indicate that LUC GHG emissions may have a smaller contribution to the overall biofuel life cycle than previously thought. Additionally, they highlight the need for future advances in LUC GHG emissions estimation including improvements to CGE models and aboveground and belowground carbon content data.

7.
Biotechnol Lett ; 34(12): 2259-63, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23086569

RESUMO

Enzymes and yeast are important ingredients in the production of ethanol, yet the energy consumption and emissions associated with their production are often excluded from life-cycle analyses of ethanol. We provide new estimates for the energy consumed and greenhouse gases (GHGs) emitted during enzyme and yeast manufacture, including contributions from key ingredients such as starch, glucose, and molasses. We incorporated these data into Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation model and observed that enzymes and yeast together contribute 1.4 and 27 % of farm-to-pump GHG emissions for corn and cellulosic ethanol, respectively. Over the course of the entire corn ethanol life cycle, yeast and enzymes contribute a negligible amount of GHG emissions, but increase GHG emissions from the cellulosic ethanol life cycle by 5.6 g CO(2)e/MJ.


Assuntos
Dióxido de Carbono/metabolismo , Celulose/metabolismo , Etanol/metabolismo , Leveduras/enzimologia , Leveduras/metabolismo , Zea mays/metabolismo , Metabolismo Energético , Glucose/metabolismo , Melaço , Amido/metabolismo
8.
Environ Sci Technol ; 46(22): 12704-10, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23075406

RESUMO

This paper addresses the environmental burdens (energy consumption and air emissions, including greenhouse gases, GHGs) of the material production, assembly, and recycling of automotive lithium-ion batteries in hybrid electric, plug-in hybrid electric, and battery electric vehicles (BEV) that use LiMn(2)O(4) cathode material. In this analysis, we calculated the energy consumed and air emissions generated when recovering LiMn(2)O(4), aluminum, and copper in three recycling processes (hydrometallurgical, intermediate physical, and direct physical recycling) and examined the effect(s) of closed-loop recycling on environmental impacts of battery production. We aimed to develop a U.S.-specific analysis of lithium-ion battery production and in particular sought to resolve literature discrepancies concerning energy consumed during battery assembly. Our analysis takes a process-level (versus a top-down) approach. For a battery used in a BEV, we estimated cradle-to-gate energy and GHG emissions of 75 MJ/kg battery and 5.1 kg CO(2)e/kg battery, respectively. Battery assembly consumes only 6% of this total energy. These results are significantly less than reported in studies that take a top-down approach. We further estimate that direct physical recycling of LiMn(2)O(4), aluminum, and copper in a closed-loop scenario can reduce energy consumption during material production by up to 48%.


Assuntos
Poluentes Atmosféricos/análise , Fontes de Energia Elétrica , Gases/análise , Lítio/química , Manganês/química , Óxidos/química , Reciclagem/métodos , Automóveis , Monitoramento Ambiental , Efeito Estufa , Modelos Teóricos , Sensibilidade e Especificidade , Estados Unidos
9.
Environ Sci Technol ; 46(2): 619-27, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22107036

RESUMO

The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.


Assuntos
Poluentes Atmosféricos/química , Carvão Mineral/análise , Efeito Estufa , Metano/química , Gás Natural/análise , Petróleo/análise , Monitoramento Ambiental/métodos , Indústrias Extrativas e de Processamento , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA