Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(1): e0257123, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38108639

RESUMO

IMPORTANCE: Staphylococcus aureus is one of the leading causes of antimicrobial-resistant infections whose success as a pathogen is facilitated by its massive array of immune evasion tactics, including intracellular survival within critical immune cells such as neutrophils, the immune system's first line of defense. In this study, we describe a novel pathway by which intracellular S. aureus can suppress the antimicrobial capabilities of human neutrophils by using the anti-inflammatory adenosine receptor, adora2a (A2aR). We show that signaling through A2aR suppresses the pentose phosphate pathway, a metabolic pathway used to fuel the antimicrobial NADPH oxidase complex that generates reactive oxygen species (ROS). As such, neutrophils show enhanced ROS production and reduced intracellular S. aureus when treated with an A2aR inhibitor. Taken together, we identify A2aR as a potential therapeutic target for combatting intracellular S. aureus infection.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Humanos , Neutrófilos , Staphylococcus aureus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Via de Pentose Fosfato , Interações Hospedeiro-Patógeno , Anti-Infecciosos/metabolismo , Receptores Purinérgicos P1/metabolismo
2.
Acta Biomater ; 160: 311-321, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754270

RESUMO

Since the recent observation that immune cells undergo metabolic reprogramming upon activation, there has been immense research in this area to not only understand the basis of such changes, but also to exploit metabolic rewiring for therapeutic benefit. In a resting state, macrophages preferentially utilise oxidative phosphorylation to generate energy; however, in the presence of immune cell activators, glycolytic genes are upregulated, and energy is generated through glycolysis. This facilitates the rapid production of biosynthetic intermediates and a pro-inflammatory macrophage phenotype. While this is essential to mount responses to infectious agents, more evidence is accumulating linking dysregulated metabolism to inappropriate immune responses. Given that certain biomaterials are known to promote an inflammatory macrophage phenotype, this prompted us to investigate if biomaterial particulates can impact on macrophage metabolism. Using micron and nano sized hydroxyapatite (HA), we demonstrate for the first time that these biomaterials can indeed drive changes in metabolism, and that this occurs in a size-dependent manner. We show that micronHA, but not nanoHA, particles upregulate surrogate markets of glycolysis including the glucose transporter (GLUT1), hexokinase 2 (HK2), GAPDH, and PKM2. Furthermore, we demonstrate that micronHA alters mitochondrial morphology and promotes a bioenergetic shift to favour glycolysis. Finally, we demonstrate that glycolytic gene expression is dependent on particle uptake and that targeting glycolysis attenuates the pro-inflammatory profile of micronHA-treated macrophages. These results not only further our understanding of biomaterial-based macrophage activation, but also implicate immunometabolism as a new area for consideration in intelligent biomaterial design and therapeutic targeting. STATEMENT OF SIGNIFICANCE: Several recent studies have reported that immune cell activation occurs concurrently with metabolic reprogramming. Furthermore, metabolic reprogramming of innate immune cells plays a prominent role in determining cellular phenotype and function. In this study we demonstrate that hydroxyapatite particle size alters macrophage metabolism, in turn driving their functional phenotype. Specifically, the pro-inflammatory phenotype promoted by micron-sized HA-particles is accompanied by changes in mitochondrial dynamics and a bioenergetic shift favouring glycolysis. This effect is not seen with nano-HA particles and can be attenuated upon inhibition of glycolysis. This study therefore not only identifies immunometabolism as a useful tool for characterising the immune response to biomaterials, but also highlights immunometabolism as a targetable aspect of the host response for therapeutic benefit.


Assuntos
Durapatita , Macrófagos , Durapatita/farmacologia , Tamanho da Partícula , Macrófagos/metabolismo , Materiais Biocompatíveis/farmacologia , Metaboloma , Ativação de Macrófagos
3.
Elife ; 112022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36254592

RESUMO

In this study, we utilise fluorescence lifetime imaging of NAD(P)H-based cellular autofluorescence as a non-invasive modality to classify two contrasting states of human macrophages by proxy of their governing metabolic state. Macrophages derived from human blood-circulating monocytes were polarised using established protocols and metabolically challenged using small molecules to validate their responding metabolic actions in extracellular acidification and oxygen consumption. Large field-of-view images of individual polarised macrophages were obtained using fluorescence lifetime imaging microscopy (FLIM). These were challenged in real time with small-molecule perturbations of metabolism during imaging. We uncovered FLIM parameters that are pronounced under the action of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), which strongly stratifies the phenotype of polarised human macrophages; however, this performance is impacted by donor variability when analysing the data at a single-cell level. The stratification and parameters emanating from a full field-of-view and single-cell FLIM approach serve as the basis for machine learning models. Applying a random forests model, we identify three strongly governing FLIM parameters, achieving an area under the receiver operating characteristics curve (ROC-AUC) value of 0.944 and out-of-bag (OBB) error rate of 16.67% when classifying human macrophages in a full field-of-view image. To conclude, 2P-FLIM with the integration of machine learning models is showed to be a powerful technique for analysis of both human macrophage metabolism and polarisation at full FoV and single-cell level.


Assuntos
Macrófagos , NAD , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona , Humanos , Aprendizado de Máquina , Macrófagos/metabolismo , Microscopia de Fluorescência/métodos , NAD/metabolismo
4.
Atherosclerosis ; 352: 35-45, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667162

RESUMO

BACKGROUND AND AIMS: Metabolic reprogramming of innate immune cells is emerging as a key player in the progression of a number of chronic diseases, including atherosclerosis, where high rates of glycolysis correlate with plaque instability. This study aimed to investigate if cholesterol crystals, which are key atherosclerosis-associated DAMPs (damage/danger-associated molecular patterns), alter immune cell metabolism and whether this, in turn, impacts on macrophage phenotype and function. METHODS AND RESULTS: Primary human macrophages were treated with cholesterol crystals and expression of M1 (CXCL9, CXCL10) and M2-associated (MRC1, CCL13) macrophage markers, alarmins, and inflammatory cytokines were assessed either by real-time PCR or ELISA. Cholesterol crystal-induced changes in glycolytic markers were determined using real-time PCR and western blotting, while changes in cellular respiration and mitochondrial dynamics were examined via Seahorse analysis, Fluorescence Lifetime Imaging Microscopy (FLIM) and confocal microscopy. Treatment of macrophages with cholesterol crystals upregulated mRNA levels of CXCL9 and CXCL10, while concomitantly downregulating expression of MRC1 and CCL13. Cholesterol crystal--treated macrophages also exhibited a significant shift in metabolism to favour glycolysis, accompanied by the expression of key glycolytic markers GLUT1, Hexokinase 2, HIF1α, GAPDH and PFKFB3. Furthermore, we show that these effects are mediated upstream by the glycolytic enzyme, PKM2, and that direct inhibition of glycolysis or PKM2 nuclear localisation leads to a significant reduction in cholesterol crystal-induced inflammatory readouts. CONCLUSIONS: This study not only provides further insight into how atherosclerosis-associated DAMPs impact on immune cell function, but also highlights metabolic reprogramming as a potential therapeutic target for cholesterol crystal-related inflammation.


Assuntos
Aterosclerose , Ativação de Macrófagos , Aterosclerose/metabolismo , Colesterol/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo
5.
Acta Biomater ; 133: 208-221, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33657453

RESUMO

Tissue healing and regeneration is a complex, choreographed, spatiotemporal process involving a plethora of cell types, the activity of which is stringently regulated in order for effective tissue repair to ensue post injury. A number of globally prevalent conditions such as heart disease, organ failure, and severe musculoskeletal disorders require new therapeutic strategies to repair damaged or diseased tissue, particularly given an ageing population in which obesity, diabetes, and consequent tissue defects have reached epidemic proportions. This is further compounded by the lack of intrinsic healing and poor regenerative capacity of certain adult tissues. While vast progress has been made in the last decade regarding tissue regenerative strategies to direct self-healing, for example, through implantation of tissue engineered scaffolds, several challenges have hampered the clinical application of these technologies. Control of the immune response is growing as an attractive approach in regenerative medicine and it is becoming increasingly apparent that an in depth understanding of the interplay between cells of the immune system and tissue specific progenitor cells is of paramount importance. Furthermore, the integration of immunology and bioengineering promises to elevate the efficacy of biomaterial-based tissue repair and regeneration. In this review, we highlight the role played by individual immune cell subsets in tissue repair processes and describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated targeting of immune cell activity. STATEMENT OF SIGNIFICANCE: It is becoming increasingly apparent that controlling the immune response is as an attractive approach in regenerative medicine. Here, we propose that an in-depth understanding of immune system and tissue specific progenitor cell interactions may reveal mechanisms by which tissue healing and regeneration takes place, in addition to identifying novel therapeutic targets that could be used to enhance the tissue repair process. To date, most reviews have focused solely on macrophage subsets. This manuscript details the role of other innate and adaptive immune cells such as innate lymphoid cells (ILCs), natural killer (NK) cells and γδT cells (in addition to macrophages) in tissue healing. We also describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated cytokine and drug delivery.


Assuntos
Imunidade Inata , Regeneração , Linfócitos , Macrófagos , Medicina Regenerativa
6.
Nat Rev Immunol ; 21(7): 411-425, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33514947

RESUMO

Haem oxygenase 1 (HO-1), an inducible enzyme responsible for the breakdown of haem, is primarily considered an antioxidant, and has long been overlooked by immunologists. However, research over the past two decades in particular has demonstrated that HO-1 also exhibits numerous anti-inflammatory properties. These emerging immunomodulatory functions have made HO-1 an appealing target for treatment of diseases characterized by high levels of chronic inflammation. In this Review, we present an introduction to HO-1 for immunologists, including an overview of its roles in iron metabolism and antioxidant defence, and the factors which regulate its expression. We discuss the impact of HO-1 induction in specific immune cell populations and provide new insights into the immunomodulation that accompanies haem catabolism, including its relationship to immunometabolism. Furthermore, we highlight the therapeutic potential of HO-1 induction to treat chronic inflammatory and autoimmune diseases, and the issues faced when trying to translate such therapies to the clinic. Finally, we examine a number of alternative, safer strategies that are under investigation to harness the therapeutic potential of HO-1, including the use of phytochemicals, novel HO-1 inducers and carbon monoxide-based therapies.


Assuntos
Antioxidantes/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/enzimologia , Animais , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Monóxido de Carbono/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Indução Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Modelos Biológicos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/enzimologia , Esclerose Múltipla/imunologia , Compostos Fitoquímicos/uso terapêutico , Pneumonia/tratamento farmacológico , Pneumonia/enzimologia , Pneumonia/imunologia , Psoríase/tratamento farmacológico , Psoríase/enzimologia , Psoríase/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunologia de Transplantes
7.
Biomaterials ; 239: 119833, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32062479

RESUMO

Engineering a pro-regenerative immune response following scaffold implantation is integral to functional tissue regeneration. The immune response to implanted biomaterials is determined by multiple factors, including biophysical cues such as material stiffness, topography and particle size. In this study we developed an immune modulating scaffold for bone defect healing containing bone mimetic nano hydroxyapatite particles (BMnP). We first demonstrate that, in contrast to commercially available micron-sized hydroxyapatite particles, in-house generated BMnP preferentially polarize human macrophages towards an M2 phenotype, activate the transcription factor cMaf and specifically enhance production of the anti-inflammatory cytokine, IL-10. Furthermore, nano-particle treated macrophages enhance mesenchymal stem cell (MSC) osteogenesis in vitro and this occurs in an IL-10 dependent manner, demonstrating a direct pro-osteogenic role for this cytokine. BMnPs were also capable of driving pro-angiogenic responses in human macrophages and HUVECs. Characterization of immune cell subsets following incorporation of functionalized scaffolds into a rat femoral defect model revealed a similar profile, with micron-sized hydroxyapatite functionalized scaffolds eliciting pro-inflammatory responses characterized by infiltrating T cells and elevated expression of M1 macrophages markers compared to BMnP functionalized scaffolds which promoted M2 macrophage polarization, tissue vascularization and increased bone volume. Taken together these results demonstrate that nano-sized Hydroxyapatite has immunomodulatory potential and is capable of directing anti-inflammatory innate immune-mediated responses that are associated with tissue repair and regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Regeneração Óssea , Interleucina-10 , Ativação de Macrófagos , Macrófagos , Ratos , Alicerces Teciduais
8.
Front Immunol ; 10: 2137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572363

RESUMO

African trypanosomes, such as Trypanosoma brucei (T. brucei), are protozoan parasites of the mammalian vasculature and central nervous system that are best known for causing fatal human sleeping sickness. As exclusively extracellular parasites, trypanosomes are subject to constant challenge from host immune defenses but they have developed very effective strategies to evade and modulate these responses to maintain an infection while simultaneously prolonging host survival. Here we investigate host parasite interactions, especially within the CNS context, which are not well-understood. We demonstrate that T. brucei strongly upregulates the stress response protein, Heme Oxygenase 1 (HO-1), in primary murine glia and macrophages in vitro. Furthermore, using a novel AHADHinT. brucei cell line, we demonstrate that specific aromatic ketoacids secreted by bloodstream forms of T. brucei are potent drivers of HO-1 expression and are capable of inhibiting pro-IL1ß induction in both glia and macrophages. Additionally, we found that these ketoacids significantly reduced IL-6 and TNFα production by glia, but not macrophages. Finally, we present data to support Nrf2 activation as the mechanism of action by which these ketoacids upregulate HO-1 expression and mediate their anti-inflammatory activity. This study therefore reports a novel immune evasion mechanism, whereby T. brucei secretes amino-acid derived metabolites for the purpose of suppressing both the host CNS and peripheral immune response, potentially via induction of the Nrf2/HO-1 pathway.


Assuntos
Heme Oxigenase-1/imunologia , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Fator 2 Relacionado a NF-E2/imunologia , Neuroglia/imunologia , Piruvatos/imunologia , Trypanosoma brucei brucei/imunologia , Animais , Inflamação/imunologia , Inflamação/patologia , Macrófagos/patologia , Camundongos , Neuroglia/patologia
9.
J Biomed Mater Res A ; 107(10): 2222-2234, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31116910

RESUMO

Extracellular matrix (ECM)-derived implants hold great promise for tissue repair, but new strategies are required to produce efficiently decellularized scaffolds with the necessary porosity and mechanical properties to facilitate regeneration. In this study, we demonstrate that it is possible to produce highly porous, elastic, articular cartilage (AC) ECM-derived scaffolds that are efficiently decellularized, nonimmunogenic, and chondro-permissive. Pepsin solubilized porcine AC was cross-linked with glyoxal, lyophilized and then subjected to dehydrothermal treatment. The resulting scaffolds were predominantly collagenous in nature, with the majority of sulphated glycosaminoglycan (sGAG) and DNA removed during scaffold fabrication. Four scaffold variants were produced to examine the effect of both ECM (10 or 20 mg/mL) and glyoxal (5 or 10 mM) concentration on the mechanical and biological properties of the resulting construct. When seeded with human infrapatellar fat pad-derived stromal cells, the scaffolds with the lowest concentration of both ECM and glyoxal were found to promote the development of a more hyaline-like cartilage tissue, as evident by increased sGAG and type II collagen deposition. Furthermore, when cultured in the presence of human macrophages, it was found that these ECM-derived scaffolds did not induce the production of key proinflammatory cytokines, which is critical to success of an implantable biomaterial. Together these findings demonstrate that the novel combination of solubilized AC ECM and glyoxal crosslinking can be used to produce highly porous scaffolds that are sufficiently decellularized, highly elastic, chondro-permissive and do not illicit a detrimental immune response when cultured in the presence of human macrophages.


Assuntos
Condrócitos/citologia , Reagentes de Ligações Cruzadas/química , Elasticidade , Matriz Extracelular/metabolismo , Glioxal/farmacologia , Ortopedia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Cartilagem Articular/citologia , Condrócitos/efeitos dos fármacos , Condrogênese , Citocinas/biossíntese , Matriz Extracelular/efeitos dos fármacos , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Porosidade , Solubilidade , Suínos
10.
J Leukoc Biol ; 106(1): 35-43, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31091351

RESUMO

Intravascular hemolysis, in addition to reducing red cell counts, incurs extensive vascular inflammation and oxidative stress. One product of hemolysis, heme, is a potent danger associated molecular pattern (DAMP), activating leukocytes and inducing cytokine expression and processing, among other pro-inflammatory effects. We explored pathways by which heme-induced inflammation may be amplified under sterile conditions. Incubation of human Mϕs, differentiated from CD14+ cells, with heme induced time- and concentration-dependent gene and protein expression of S100A8, a myeloid cell-derived alarmin. Human Mϕ stimulation with recombinant S100A8, in turn, induced robust pro-IL-1ß expression that was dependent upon NF-κB activation, gene transcription, and partially dependent upon TLR4-mediated signaling. Moreover, heme itself stimulated significant Mϕ pro-IL-1ß gene and protein expression via an S100A8-mediated mechanism and greatly amplified S100A8-driven NLRP3 inflammasome-mediated IL-1ß secretion. In vivo, induction of acute intravascular hemolysis in mice induced a rapid elevation of plasma S100A8 that could be abolished by hemopexin, a heme scavenger. Finally, plasma S100A8 levels were found to be significantly elevated in patients with the inherited hemolytic anemia, sickle cell anemia, when compared with levels in healthy individuals. In conclusion, we demonstrate that hemolytic processes are associated with S100A8 generation and that some of the inflammatory effects of heme may be amplified by autocrine S100A8 production. Findings suggest a mechanism by which hemolytic inflammation could be propagated via leukocyte priming by endogenous proteins, even in sterile inflammatory environments such as those that occur in the hemolytic diseases. S100A8 may represent a therapeutic target for reducing inflammation in hemolytic disorders.


Assuntos
Calgranulina A/fisiologia , Heme/farmacologia , Hemólise/imunologia , Inflamação/imunologia , Macrófagos/efeitos dos fármacos , Adulto , Animais , Feminino , Humanos , Interleucina-1beta/fisiologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , NF-kappa B/antagonistas & inibidores , Receptor 4 Toll-Like/fisiologia
11.
Front Immunol ; 10: 345, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881359

RESUMO

Polyphenols are important immunonutrients which have been investigated in the context of inflammatory and autoimmune disease due to their significant immunosuppressive properties. However, the mechanism of action of many polyphenols is unclear, particularly in human immune cells. The emerging field of immunometabolism has highlighted the significance of metabolic function in the regulation of immune cell activity, yet the effects of polyphenols on immune cell metabolic signaling and function has not been explored. We have investigated the effects of two plant-derived polyphenols, carnosol and curcumin, on the metabolism of primary human dendritic cells (DC). We report that human DC display an increase in glycolysis and spare respiratory capacity in response to LPS stimulation, which was attenuated by both carnosol and curcumin treatment. The regulation of DC metabolism by these polyphenols appeared to be mediated by their activation of the cellular energy sensor, AMP-activated Protein Kinase (AMPK), which resulted in the inhibition of mTOR signaling in LPS-stimulated DC. Previously we have reported that both carnosol and curcumin can regulate the maturation and function of human DC through upregulation of the immunomodulatory enzyme, Heme Oxygenase-1 (HO-1). Here we also demonstrate that the induction of HO-1 by polyphenols in human DC is dependent on their activation of AMPK. Moreover, pharmacological inhibition of AMPK was found to reverse the observed reduction of DC maturation by carnosol and curcumin. This study therefore describes a novel relationship between metabolic signaling via AMPK and HO-1 induction by carnosol and curcumin in human DC, and characterizes the effects of these polyphenols on DC immunometabolism for the first time. These results expand our understanding of the mechanism of action of carnosol and curcumin in human immune cells, and suggest that polyphenol supplementation may be useful to regulate the metabolism and function of immune cells in inflammatory and metabolic disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Heme Oxigenase-1/metabolismo , Fenômenos do Sistema Imunitário/efeitos dos fármacos , Polifenóis/farmacologia , Abietanos/farmacologia , Células Cultivadas , Curcumina/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima/efeitos dos fármacos
12.
Biomaterials ; 188: 63-73, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321864

RESUMO

Biological scaffolds generated from tissue-derived extracellular matrix (ECM) are commonly used clinically for soft tissue regeneration. Such biomaterials can enhance tissue-specific differentiation of adult stem cells, suggesting that structuring different ECMs into multi-layered scaffolds can form the basis of new strategies for regenerating damaged interfacial tissues such as the osteochondral unit. In this study, mass spectrometry is used to demonstrate that growth plate (GP) and articular cartilage (AC) ECMs contain a unique array of regulatory proteins that may be particularly suited to bone and cartilage repair respectively. Applying a novel iterative freeze-drying method, porous bi-phasic scaffolds composed of GP ECM overlaid by AC ECM are fabricated, which are capable of spatially directing stem cell differentiation in vitro, promoting the development of graded tissues transitioning from calcified cartilage to hyaline-like cartilage. Evaluating repair 12-months post-implantation into critically-sized caprine osteochondral defects reveals that these scaffolds promote regeneration in a manner distinct to commercial control-scaffolds. The GP layer supports endochondral bone formation, while the AC layer stimulates the formation of an overlying layer of hyaline cartilage with a collagen fiber architecture better recapitulating the native tissue. These findings support the use of a bi-layered, tissue-specific ECM derived scaffolds for regenerating spatially complex musculoskeletal tissues.


Assuntos
Condrogênese , Matriz Extracelular/química , Células-Tronco Mesenquimais/citologia , Osteogênese , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Cartilagem Articular/química , Diferenciação Celular , Células Cultivadas , Cabras , Lâmina de Crescimento/química , Regeneração , Suínos , Engenharia Tecidual/métodos
13.
Sci Rep ; 8(1): 10287, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980703

RESUMO

Psoriasis is a chronic autoimmune disease mediated by dysregulated immune responses in dendritic cells (DC) and T cells. The stress-response enzyme heme oxygenase-1 (HO-1) has been described as protective in animal models of psoriasis, however, implementation of HO-1-based therapies is hindered by the lack of clinically-suitable HO-1 inducers. The plant-derived polyphenols, carnosol and curcumin, have been identified as candidate HO-1 inducers however there has been little investigation into their effects on human immune cells. We demonstrate that treatment of human DC with these polyphenols limits DC maturation, reduces pro-inflammatory cytokine production, and prevents induction of allospecific T cell responses, in a manner partially dependent on carbon monoxide (CO). We also characterised their effects in ex-vivo psoriasis PBMC and report that curcumin, but not carnosol, strongly reduces T cell proliferation and cytokine poly-functionality, with reduced expression of psoriatic cytokines IFNγ, IL-17, GM-CSF and IL-22. This study therefore supports reports highlighting the therapeutic potential of curcumin in psoriasis by providing insight into its immunological effects on healthy human DC and psoriasis PBMC. We also demonstrate, for the first time, the anti-inflammatory effects of carnosol in human immune cells.


Assuntos
Abietanos/farmacologia , Curcumina/farmacologia , Células Dendríticas/imunologia , Heme Oxigenase-1/metabolismo , Inflamação/prevenção & controle , Psoríase/tratamento farmacológico , Linfócitos T/imunologia , Anti-Inflamatórios não Esteroides/farmacologia , Monóxido de Carbono/metabolismo , Diferenciação Celular , Proliferação de Células , Células Dendríticas/efeitos dos fármacos , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Humanos , Inflamação/enzimologia , Inflamação/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Ativação Linfocitária , Psoríase/enzimologia , Psoríase/imunologia , Linfócitos T/efeitos dos fármacos
14.
Acta Biomater ; 65: 426-435, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29104084

RESUMO

Total joint replacements (TJR) are costly procedures required to relieve pain and restore function in patients suffering from end-stage arthritis. Despite great progress in the development and durability of TJRs, the generation of prosthesis-associated wear particles over time leads to an inflammatory cascade which culminates in periprosthetic osteolysis. Studies suggest that wear particles drive the polarization/differentiation of immature macrophages towards a pro-inflammatory M1 phenotype rather than an anti-inflammatory M2 phenotype associated with normal bone and wound healing. This, in turn, contributes to the initiation of peri-implant inflammation. As a result, modulating M1 macrophage cytokine production has been recognised as a viable therapeutic option. The aim of this study was to examine the impact of hydroxyapatite (HA) and poly(methyl methacrylate) (PMMA) particles on human macrophage polarization by comparing their effect on M1/M2-associated gene expression using real-time PCR. Furthermore, using immunoblotting to assess kinase activation, we sought to identify the intracellular signalling molecules activated by PMMA/HA particles and to determine whether pharmacological blockade of these molecules impacts on macrophage phenotype and cytokine production as measured by ELISA. We report that wear particles preferentially polarize macrophages towards an M1 phenotype, an effect that is dependent on activation of the membrane proximal kinase, Syk and members of the mitogen-activated protein kinase (MAPK) family of signalling molecules. Pre-treatment of macrophages with Syk inhibitors (R788/piceatannol) or MAPK inhibitors (SB203580 and PD98059), not only prevents M1 polarization, but also attenuates production of key pro-inflammatory mediators that have been specifically implicated in periprosthetic osteolysis and osteoclast differentiation. STATEMENT OF SIGNIFICANCE: It is now well established that wear-debris particles from implanted materials drive deleterious inflammatory responses which can eventually lead to implant loosening. In this study, we provide further insight into the specific cellular pathways activated by wear particles in primary human immune cells. We demonstrate that PMMA bone cement and hydroxyapatite, a commonly used biomaterial, drive the polarization of macrophages towards an inflammatory phenotype and identify the specific signalling molecules that are activated in this process. Pre-treatment of macrophages with pharmacological inhibitors of these molecules in turn prevents macrophage polarization and dampens inflammatory cytokine production. Hence these signalling molecules represent potential therapeutic targets to treat or possibly prevent particulate induced osteolysis.


Assuntos
Polaridade Celular , Prótese Articular , Macrófagos/citologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Tirosina Quinases/metabolismo , Baço/enzimologia , Animais , Materiais Biocompatíveis/química , Durapatita/química , Humanos , Osteoartrite/patologia , Osteoartrite/cirurgia , Osteólise , Polimetil Metacrilato/química , Falha de Prótese , Reação em Cadeia da Polimerase em Tempo Real
15.
Arthritis Res Ther ; 19(1): 23, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28173838

RESUMO

BACKGROUND: Osteoarthritis (OA) is a chronic debilitating joint disorder of particularly high prevalence in the elderly population. Intra-articular basic calcium phosphate (BCP) crystals are present in the majority of OA joints and are associated with severe degeneration. They are known to activate macrophages, synovial fibroblasts, and articular chondrocytes, resulting in increased cell proliferation and the production of pro-inflammatory cytokines and matrix metalloproteases (MMPs). This suggests a pathogenic role in OA by causing extracellular matrix degradation and subchondral bone remodelling. There are currently no disease-modifying drugs available for crystal-associated OA; hence, the aim of this study was to explore the inflammatory pathways activated by BCP crystals in order to identify potential therapeutic targets to limit crystal-induced inflammation. METHODS: Primary human macrophages and dendritic cells were stimulated with BCP crystals, and activation of spleen tyrosine kinase (Syk), phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinases (MAPKs) was detected by immunoblotting. Lipopolysaccharide (LPS)-primed macrophages were pre-treated with inhibitors of Syk, PI3K, and MAPKs prior to BCP stimulation, and cytokine production was quantified by enzyme-linked immunosorbent assay (ELISA). Aa an alternative, cells were treated with synovial fluid derived from osteoarthritic knees in the presence or absence of BCP crystals, and gene induction was assessed by real-time polymerase chain reaction (PCR). RESULTS: We demonstrate that exposure of primary human macrophages and dendritic cells to BCP crystals leads to activation of the membrane-proximal tyrosine kinases Syk and PI3K. Furthermore, we show that production of the pro-inflammatory cytokines interleukin (IL)-1α and IL-1ß and phosphorylation of downstream MEK and ERK MAPKs is suppressed following treatment with inhibitors of Syk or PI3K. Finally, we demonstrate that treatment of macrophages with BCP crystals induces the production of the damage-associated molecule S100A8 and MMP1 in a Syk-dependent manner and that synovial fluid from OA patients together with BCP crystals exacerbates these effects. CONCLUSIONS: We identify Syk and PI3K as key signalling molecules activated by BCP crystals prior to inflammatory cytokine and DAMP expression and therefore propose that Syk and PI3K represent potential targets for the treatment of BCP-related pathologies.


Assuntos
Fosfatos de Cálcio/farmacologia , Osteoartrite/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Quinase Syk/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Ativação Enzimática/fisiologia , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteoartrite/enzimologia , Reação em Cadeia da Polimerase em Tempo Real
16.
Transl Res ; 178: 81-94.e2, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27497182

RESUMO

The main limitation to successful transplantation is the antigraft response developed by the recipient immune system, and the adverse side effects of immunosuppressive agents which are associated with significant toxicity and counter indications such as infection and cancer. Furthermore, immunosuppressants do little to prevent ischemia-reperfusion injury during the transplantation procedure itself hence there is a growing need to develop novel immunosuppressive drugs specifically aimed at prolonging graft survival. Linear tetrapyrroles derived from the breakdown of mammalian heme have been shown in numerous studies to play a protective role in allograft transplantation and ischemia-reperfusion injury; however, commercial sources of these products have not been approved for use in humans. Plants and algae produce equivalent linear tetrapyrroles called bilins that serve as chromophores in light-sensing. One such marine-derived tetrapyrrole, phycocyanobilin (PCB), shows significant structural similarity to mammalian biliverdin (BV) and may prove to be a safer alternative for use in the clinic if it can exert direct effects on human immune cells. Using a mixed lymphocyte reaction, we quantified the allogeneic responses of recipient cells to donor cells and found that PCB, like BV, effectively suppressed proliferation and proinflammatory cytokine production. In addition, we found that BV and PCB can directly downregulate the proinflammatory responses of both innate dendritic cells and adaptive T cells. We therefore propose that PCB may be an effective therapeutic drug in the clinical setting of transplantation and may also have wider applications in regulating inappropriate inflammation.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Tetrapirróis/farmacologia , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Biliverdina/farmacologia , Biliverdina/uso terapêutico , Complexo CD3/metabolismo , Proliferação de Células/efeitos dos fármacos , Citocinas/biossíntese , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Inflamação/patologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ficobilinas/farmacologia , Ficobilinas/uso terapêutico , Ficocianina/farmacologia , Ficocianina/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Transplante Homólogo
17.
Atherosclerosis ; 251: 197-205, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27356299

RESUMO

BACKGROUND AND AIMS: Cholesterol crystals are a key component of atherosclerotic lesions where they promote pro-inflammatory cytokine production and plaque destabilization. Antagonists of inflammatory mediators and agents that dissolve or prevent the formation of cholesterol crystals are being explored as potential therapeutics for atherothrombosis. We sought to identify signalling molecules activated following exposure of immune cells to cholesterol crystals with the view to identifying novel therapeutic targets. METHODS: Human macrophages and dendritic cells (DC) were exposed to cholesterol crystals and activation of signalling molecules was assessed by immunoblotting. The role of Syk and PI3K in crystal-induced interleukin (IL)-1 production was determined by ELISA using specific kinase inhibitors. Real-time PCR was employed to examine the role of Syk/PI3K in cholesterol crystal-induced expression of S100 proteins and MMPs. RESULTS: Exposure of human macrophages and DC to cholesterol crystals induced robust activation of Syk and PI3K within 2-5 min. Pharmacological inhibition of Syk/PI3K reduced crystal-induced IL-1α/ß production by approximately 80%. Activation of the downstream MAP kinases, MEK and ERK, was suppressed following inhibition of Syk and PI3K. Finally, inhibition of both Syk and PI3K significantly reduced cholesterol crystal-induced S100A8 and MMP1 gene expression by >70% while inhibition of PI3K also reduced S100A12 expression. CONCLUSION: Cholesterol crystals activate specific cell signalling pathways which drive the production of inflammatory cytokines and degradative enzymes known to contribute to disease initiation and progression. These molecular events are dependent on activation of Syk and PI3K, hence, they represent potential therapeutic targets for the treatment of cholesterol crystal-related pathologies.


Assuntos
Células Dendríticas/citologia , Macrófagos/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Quinase Syk/metabolismo , Diferenciação Celular , Colesterol/metabolismo , Citocinas/metabolismo , Humanos , Imunidade Inata , Inflamação , Interleucina-1/metabolismo , Leucócitos Mononucleares/citologia , Sistema de Sinalização das MAP Quinases , Metaloproteinase 1 da Matriz/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Tirosina Quinases/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/química , Proteínas S100/metabolismo , Transdução de Sinais
18.
Methods Mol Biol ; 1292: 105-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25804751

RESUMO

Inflammasomes are large multiprotein complexes that assemble in response to cellular stress and infection. NOD-like receptor-related proteins (NLRPs) are essential components of these complexes and are activated by exogenous and endogenous danger signals such as crystalline substances, extracellular ATP, and pore-forming toxins. In general, inflammasome activation is accompanied by perturbations in cellular homeostasis. For example, most inflammasome activators will trigger cation efflux, reactive oxygen species (ROS) generation and caspase-1-dependent cell death, commonly referred to as pyroptosis. In this chapter, we describe protocols to examine inflammasome activation and accompanying events in vitro.


Assuntos
Inflamassomos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Homeostase/fisiologia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
19.
Plant J ; 80(6): 1131-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25280363

RESUMO

The widespread use of herbicides and antibiotics for selection of transgenic plants has not been very successful with regard to commercialization and public acceptance. Hence, alternative selection systems are required. In this study, we describe the use of ipt, the bacterial gene encoding the enzyme isopentenyl transferase from Agrobacterium tumefaciens, as a positive selectable marker for plastid transformation. A comparison between the traditional spectinomycin-based aadA selection system and the ipt selection system demonstrated that selection of transplastomic plants on medium lacking cytokinin was as effective as selection on medium containing spectinomycin. Proof of principle was demonstrated by transformation of the kasIII gene encoding 3-ketoacyl acyl carrier protein synthase III into tobacco plastids. Transplastomic tobacco plants were readily obtained using the ipt selection system, and were phenotypically normal despite over-expression of isopentenyl transferase. Over-expression of KASIII resulted in a significant increase in 16:0 fatty acid levels, and a significant decrease in the levels of 18:0 and 18:1 fatty acids. Our study demonstrates use of a novel positive plastid transformation system that may be used for selection of transplastomic plants without affecting the expression of transgenes within the integrated vector cassette or the resulting activity of the encoded protein. This system has the potential to be applied to monocots, which are typically not amenable to traditional antibiotic-based selection systems, and may be used in combination with a negative selectable marker as part of a two-step selection system to obtain homoplasmic plant lines.


Assuntos
Citocininas/metabolismo , Ácidos Graxos/metabolismo , Nicotiana/metabolismo , Espectinomicina/farmacologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Expressão Gênica , Vetores Genéticos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Nicotiana/genética , Transformação Genética , Transgenes
20.
J Immunol ; 193(4): 1911-9, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25015823

RESUMO

TLR4 interactor with leucine-rich repeats (TRIL) is a brain-enriched accessory protein that is important in TLR3 and TLR4 signaling. In this study, we generated Tril(-/-) mice and examined TLR responses in vitro and in vivo. We found a role for TRIL in both TLR4 and TLR3 signaling in mixed glial cells, consistent with the high level of expression of TRIL in these cells. We also found that TRIL is a modulator of the innate immune response to LPS challenge and Escherichia coli infection in vivo. Tril(-/-) mice produce lower levels of multiple proinflammatory cytokines and chemokines specifically within the brain after E. coli and LPS challenge. Collectively, these data uncover TRIL as a mediator of innate immune responses within the brain, where it enhances neuronal cytokine responses to infection.


Assuntos
Encéfalo/imunologia , Proteínas de Transporte/imunologia , Imunidade Inata/imunologia , Proteínas de Membrana/imunologia , Receptor 3 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Células Cultivadas , Quimiocina CCL5/biossíntese , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-6/biossíntese , Lipopolissacarídeos , Glicoproteínas de Membrana/imunologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/imunologia , Poli I-C/farmacologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA