Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 228(3): 343-352, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36823694

RESUMO

BACKGROUND: The purpose of this study was to assess if single nucleotide polymorphisms (SNPs) in lung mucins MUC5B and MUC5AC are associated with Mycobacterium tuberculosis outcomes. METHODS: Independent SNPs in MUC5B and MUC5AC (genotyped by Illumina HumanOmniExpress array) were assessed for associations with tumor necrosis factor (TNF) concentrations (measured by immunoassay) in cerebral spinal fluid (CSF) from tuberculous meningitis (TBM) patients. SNPs associated with CSF TNF concentrations were carried forward for analyses of pulmonary and meningeal tuberculosis susceptibility and TBM mortality. RESULTS: MUC5AC SNP rs28737416 T allele was associated with lower CSF concentrations of TNF (P = 1.8 × 10-8) and IFN-γ (P = 2.3 × 10-6). In an additive genetic model, rs28737416 T/T genotype was associated with higher susceptibility to TBM (odds ratio [OR], 1.24; 95% confidence interval [CI], 1.03-1.49; P = .02), but not pulmonary tuberculosis (OR, 1.11, 95% CI, .98-1.25; P = .10). TBM mortality was higher among participants with the rs28737416 T/T and T/C genotypes (35/119, 30.4%) versus the C/C genotype (11/89, 12.4%; log-rank P = .005) in a Vietnam discovery cohort (n = 210), an independent Vietnam validation cohort (n = 87; 9/87, 19.1% vs 1/20, 2.5%; log-rank P = .02), and an Indonesia validation cohort (n = 468, 127/287, 44.3% vs 65/181, 35.9%; log-rank P = .06). CONCLUSIONS: MUC5AC variants may contribute to immune changes that influence TBM outcomes.


Assuntos
Mycobacterium tuberculosis , Tuberculose Meníngea , Humanos , Tuberculose Meníngea/genética , Tuberculose Meníngea/complicações , Citocinas/genética , Genótipo , Fator de Necrose Tumoral alfa/genética , Polimorfismo de Nucleotídeo Único , Mucina-5AC/genética
2.
J Immunol ; 208(6): 1352-1361, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217585

RESUMO

The major human genes regulating Mycobacterium tuberculosis-induced immune responses and tuberculosis (TB) susceptibility are poorly understood. Although IL-12 and IL-10 are critical for TB pathogenesis, the genetic factors that regulate their expression in humans are unknown. CNBP, REL, and BHLHE40 are master regulators of IL-12 and IL-10 signaling. We hypothesized that common variants in CNBP, REL, and BHLHE40 were associated with IL-12 and IL-10 production from dendritic cells, and that these variants also influence adaptive immune responses to bacillus Calmette-Guérin (BCG) vaccination and TB susceptibility. We characterized the association between common variants in CNBP, REL, and BHLHE40, innate immune responses in dendritic cells and monocyte-derived macrophages, BCG-specific T cell responses, and susceptibility to pediatric and adult TB in human populations. BHLHE40 single-nucleotide polymorphism (SNP) rs4496464 was associated with increased BHLHE40 expression in monocyte-derived macrophages and increased IL-10 from peripheral blood dendritic cells and monocyte-derived macrophages after LPS and TB whole-cell lysate stimulation. SNP BHLHE40 rs11130215, in linkage disequilibrium with rs4496464, was associated with increased BCG-specific IL-2+CD4+ T cell responses and decreased risk for pediatric TB in South Africa. SNPs REL rs842634 and rs842618 were associated with increased IL-12 production from dendritic cells, and SNP REL rs842618 was associated with increased risk for TB meningitis. In summary, we found that genetic variations in REL and BHLHE40 are associated with IL-12 and IL-10 cytokine responses and TB clinical outcomes. Common human genetic regulation of well-defined intermediate cellular traits provides insights into mechanisms of TB pathogenesis.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Proteínas Proto-Oncogênicas c-rel/genética , Tuberculose , Adulto , Vacina BCG , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Criança , Proteínas de Homeodomínio , Humanos , Interleucina-10/genética , Interleucina-12/genética , Tuberculose/genética
3.
Proc Natl Acad Sci U S A ; 114(37): E7746-E7755, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28827342

RESUMO

Risk, severity, and outcome of infection depend on the interplay of pathogen virulence and host susceptibility. Systematic identification of genetic susceptibility to infection is being undertaken through genome-wide association studies, but how to expeditiously move from genetic differences to functional mechanisms is unclear. Here, we use genetic association of molecular, cellular, and human disease traits and experimental validation to demonstrate that genetic variation affects expression of VAC14, a phosphoinositide-regulating protein, to influence susceptibility to Salmonella enterica serovar Typhi (S Typhi) infection. Decreased VAC14 expression increased plasma membrane cholesterol, facilitating Salmonella docking and invasion. This increased susceptibility at the cellular level manifests as increased susceptibility to typhoid fever in a Vietnamese population. Furthermore, treating zebrafish with a cholesterol-lowering agent, ezetimibe, reduced susceptibility to S Typhi. Thus, coupling multiple genetic association studies with mechanistic dissection revealed how VAC14 regulates Salmonella invasion and typhoid fever susceptibility and may open doors to new prophylactic/therapeutic approaches.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Salmonella typhi/genética , Linhagem Celular Tumoral , Colesterol/genética , Colesterol/metabolismo , Ezetimiba , Variação Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Polimorfismo de Nucleotídeo Único , Salmonella/genética , Salmonella/patogenicidade , Salmonella typhi/metabolismo , Salmonella typhi/patogenicidade , Febre Tifoide/metabolismo , Febre Tifoide/fisiopatologia , Virulência/genética
4.
Cell ; 148(3): 434-46, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22304914

RESUMO

Susceptibility to tuberculosis is historically ascribed to an inadequate immune response that fails to control infecting mycobacteria. In zebrafish, we find that susceptibility to Mycobacterium marinum can result from either inadequate or excessive acute inflammation. Modulation of the leukotriene A(4) hydrolase (LTA4H) locus, which controls the balance of pro- and anti-inflammatory eicosanoids, reveals two distinct molecular routes to mycobacterial susceptibility converging on dysregulated TNF levels: inadequate inflammation caused by excess lipoxins and hyperinflammation driven by excess leukotriene B(4). We identify therapies that specifically target each of these extremes. In humans, we identify a single nucleotide polymorphism in the LTA4H promoter that regulates its transcriptional activity. In tuberculous meningitis, the polymorphism is associated with inflammatory cell recruitment, patient survival and response to adjunctive anti-inflammatory therapy. Together, our findings suggest that host-directed therapies tailored to patient LTA4H genotypes may counter detrimental effects of either extreme of inflammation.


Assuntos
Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/imunologia , Tuberculose Meníngea/tratamento farmacológico , Tuberculose Meníngea/imunologia , Animais , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Leucotrieno A4/genética , Leucotrieno A4/imunologia , Leucotrieno B4/genética , Leucotrieno B4/imunologia , Lipoxinas/imunologia , Mitocôndrias/metabolismo , Infecções por Mycobacterium/genética , Mycobacterium marinum , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Transdução de Sinais , Transcrição Gênica , Tuberculose Meníngea/genética , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/imunologia
5.
J Infect Dis ; 205(4): 586-94, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22223854

RESUMO

BACKGROUND: Tuberculosis has been associated with genetic variation in host immunity. We hypothesized that single-nucleotide polymorphisms (SNPs) in SIGIRR, a negative regulator of Toll-like receptor/IL-1R signaling, are associated with susceptibility to tuberculosis. METHODS: We used a case-population study design in Vietnam with cases that had either tuberculous meningitis or pulmonary tuberculosis. We genotyped 6 SNPs in the SIGIRR gene region (including the adjacent genes PKP3 and TMEM16J) in a discovery cohort of 352 patients with tuberculosis and 382 controls. Significant associations were genotyped in a validation cohort (339 patients with tuberculosis, 376 controls). RESULTS: Three SNPs (rs10902158, rs7105848, rs7111432) were associated with tuberculosis in discovery and validation cohorts. The polymorphisms were associated with both tuberculous meningitis and pulmonary tuberculosis and were strongest with a recessive genetic model (odds ratios, 1.5-1.6; P = .0006-.001). Coinheritance of these polymorphisms with previously identified risk alleles in Toll-like receptor 2 and TIRAP was associated with an additive risk of tuberculosis susceptibility. CONCLUSIONS: These results demonstrate a strong association of SNPs in the PKP3-SIGIRR-TMEM16J gene region and tuberculosis in discovery and validation cohorts. To our knowledge, these are the first associations of polymorphisms in this region with any disease.


Assuntos
Predisposição Genética para Doença , Proteínas de Membrana/genética , Placofilinas/genética , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-1/genética , Tuberculose Meníngea/genética , Tuberculose Pulmonar/genética , Adolescente , Adulto , Anoctaminas , Feminino , Frequência do Gene , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Transferência de Fosfolipídeos , Vietnã , Adulto Jovem
6.
Nat Genet ; 43(11): 1139-41, 2011 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22001756

RESUMO

Hypovolemic shock (dengue shock syndrome (DSS)) is the most common life-threatening complication of dengue. We conducted a genome-wide association study of 2,008 pediatric cases treated for DSS and 2,018 controls from Vietnam. Replication of the most significantly associated markers was carried out in an independent Vietnamese sample of 1,737 cases and 2,934 controls. SNPs at two loci showed genome-wide significant association with DSS. We identified a susceptibility locus at MICB (major histocompatibility complex (MHC) class I polypeptide-related sequence B), which was within the broad MHC region on chromosome 6 but outside the class I and class II HLA loci (rs3132468, P(meta) = 4.41 × 10(-11), per-allele odds ratio (OR) = 1.34 (95% confidence interval: 1.23-1.46)). We identified associated variants within PLCE1 (phospholipase C, epsilon 1) on chromosome 10 (rs3765524, P(meta) = 3.08 × 10(-10), per-allele OR = 0.80 (95% confidence interval: 0.75-0.86)). We identify two loci associated with susceptibility to DSS in people with dengue, suggesting possible mechanisms for this severe complication of dengue.


Assuntos
Estudo de Associação Genômica Ampla , Antígenos de Histocompatibilidade Classe I/genética , Fosfoinositídeo Fosfolipase C/genética , Estudos de Casos e Controles , Humanos , Polimorfismo de Nucleotídeo Único
7.
Cell ; 140(5): 717-30, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20211140

RESUMO

Exposure to Mycobacterium tuberculosis produces varied early outcomes, ranging from resistance to infection to progressive disease. Here we report results from a forward genetic screen in zebrafish larvae that identify multiple mutant classes with distinct patterns of innate susceptibility to Mycobacterium marinum. A hypersusceptible mutant maps to the lta4h locus encoding leukotriene A(4) hydrolase, which catalyzes the final step in the synthesis of leukotriene B(4) (LTB(4)), a potent chemoattractant and proinflammatory eicosanoid. lta4h mutations confer hypersusceptibility independent of LTB(4) reduction, by redirecting eicosanoid substrates to anti-inflammatory lipoxins. The resultant anti-inflammatory state permits increased mycobacterial proliferation by limiting production of tumor necrosis factor. In humans, we find that protection from both tuberculosis and multibacillary leprosy is associated with heterozygosity for LTA4H polymorphisms that have previously been correlated with differential LTB(4) production. Our results suggest conserved roles for balanced eicosanoid production in vertebrate resistance to mycobacterial infection.


Assuntos
Epóxido Hidrolases/genética , Doenças dos Peixes/genética , Hanseníase/genética , Tuberculose/genética , Animais , Modelos Animais de Doenças , Doenças dos Peixes/imunologia , Predisposição Genética para Doença , Humanos , Hanseníase/imunologia , Tuberculose/imunologia , Peixe-Zebra
8.
PLoS Pathog ; 4(12): e1000229, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19057661

RESUMO

Although host genetics influences susceptibility to tuberculosis (TB), few genes determining disease outcome have been identified. We hypothesized that macrophages from individuals with different clinical manifestations of Mycobacterium tuberculosis (Mtb) infection would have distinct gene expression profiles and that polymorphisms in these genes may also be associated with susceptibility to TB. We measured gene expression levels of >38,500 genes from ex vivo Mtb-stimulated macrophages in 12 subjects with 3 clinical phenotypes: latent, pulmonary, and meningeal TB (n = 4 per group). After identifying differentially expressed genes, we confirmed these results in 34 additional subjects by real-time PCR. We also used a case-control study design to examine whether polymorphisms in differentially regulated genes were associated with susceptibility to these different clinical forms of TB. We compared gene expression profiles in Mtb-stimulated and unstimulated macrophages and identified 1,608 and 199 genes that were differentially expressed by >2- and >5-fold, respectively. In an independent sample set of 34 individuals and a subset of highly regulated genes, 90% of the microarray results were confirmed by RT-PCR, including expression levels of CCL1, which distinguished the 3 clinical groups. Furthermore, 6 single nucleotide polymorphisms (SNPs) in CCL1 were found to be associated with TB in a case-control genetic association study with 273 TB cases and 188 controls. To our knowledge, this is the first identification of CCL1 as a gene involved in host susceptibility to TB and the first study to combine microarray and DNA polymorphism studies to identify genes associated with TB susceptibility. These results suggest that genome-wide studies can provide an unbiased method to identify critical macrophage response genes that are associated with different clinical outcomes and that variation in innate immune response genes regulate susceptibility to TB.


Assuntos
Quimiocina CCL1/genética , Predisposição Genética para Doença , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Polimorfismo de Nucleotídeo Único , Tuberculose/genética , Tuberculose/imunologia , Estudos de Casos e Controles , Quimiocina CCL1/metabolismo , Análise por Conglomerados , Bases de Dados Genéticas , Regulação da Expressão Gênica , Humanos , Ativação de Macrófagos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Tuberculose Meníngea/genética , Tuberculose Meníngea/imunologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/imunologia
9.
Hum Genet ; 122(1): 51-61, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17503085

RESUMO

The genomic region surrounding the TNF locus on human chromosome 6 has previously been associated with typhoid fever in Vietnam (Dunstan et al. in J Infect Dis 183:261-268, 2001). We used a haplotypic approach to understand this association further. Eighty single nucleotide polymorphisms (SNPs) spanning a 150 kb region were genotyped in 95 Vietnamese individuals (typhoid case/mother/father trios). A subset of data from 33 SNPs with a minor allele frequency of >4.3% was used to construct haplotypes. Fifteen SNPs, which tagged the 42 constructed haplotypes were selected. The haplotype tagging SNPs (T1-T15) were genotyped in 380 confirmed typhoid cases and 380 Vietnamese ethnically matched controls. Allelic frequencies of seven SNPs (T1, T2, T3, T5, T6, T7, T8) were significantly different between typhoid cases and controls. Logistic regression results support the hypothesis that there is just one signal associated with disease at this locus. Haplotype-based analysis of the tag SNPs provided positive evidence of association with typhoid (posterior probability 0.821). The analysis highlighted a low-risk cluster of haplotypes that each carry the minor allele of T1 or T7, but not both, and otherwise carry the combination of alleles *12122*1111 at T1-T11, further supporting the one associated signal hypothesis. Finally, individuals that carry the typhoid fever protective haplotype *12122*1111 also produce a relatively low TNF-alpha response to LPS.


Assuntos
Fator de Necrose Tumoral alfa/genética , Febre Tifoide/genética , Estudos de Casos e Controles , Mapeamento Cromossômico , Análise por Conglomerados , Família , Feminino , Predisposição Genética para Doença , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Fator de Necrose Tumoral alfa/metabolismo , Febre Tifoide/metabolismo , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA