Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 111: 110890, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714446

RESUMO

BACKGROUND: Genetic alterations in oncogenic pathways are critical for cancer initiation, development, and treatment resistance. However, studies are limited regarding pathways correlated with prognosis, sorafenib, and transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC). METHODS: In this study, 1928 patients from 11 independent datasets and a clinical in-house cohort were screened to explore the relationships among canonical pathway alterations in HCC patients. The molecular mechanisms, biological functions, immune landscape, and clinical outcomes among three heterogeneous phenotypes were further explored. RESULTS: We charted the detailed landscape of pathway alterations in the TCGA-LIHC cohort, screened three pivotal pathways (p53, PI3K, and WNT), identified co-occurrence patterns and mutual exclusively, and stratified patients into three altered-pathway dominant phenotypes (ADPs). P53|PI3K ADP characterized by genomic instability (e.g., highest TMB, FGA, FGG, and FGL) indicated an unfavorable prognosis. While, patients in WNT ADP suggested a median prognosis, enhanced immune activation, and sensitivity to PD-L1 therapy. Remarkably, sorafenib and TACE exhibited efficacy for patients in WNT ADP and low frequent alteration phenotype (LFP). Additionally, ADP could work independently of common clinical traits (e.g., AJCC stage) and previous molecular classifications (e.g., iCluster, serum biomarkers). CONCLUSIONS: ADP provides a new perspective for identifying patients at high risk of recurrence and could optimize precision treatment to improve the clinical outcomes in HCC.

2.
J Hepatocell Carcinoma ; 10: 241-255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815095

RESUMO

Introduction: Mutation patterns have been extensively explored to decipher the etiologies of hepatocellular carcinoma (HCC). However, the study and potential clinical role of mutation patterns to stratify high-risk patients and optimize precision therapeutic strategies remain elusive in HCC. Methods: Using exon-sequencing data in public (n=362) and in-house (n=30) cohorts, mutation signatures were extracted to decipher relationships with the etiology and prognosis in HCC. The proteomics (n=159) and cell-line transcriptome data (n=1019) were collected to screen the implication of sensitive drugs. A novel multi-step machine-learning framework was then performed to construct a classification predictor, including recognizing stable reversed gene pairs, establishing a robust prediction model, and validating the robustness of the predictor in five independent cohorts (n=900). Results: Two heterogeneous mutation signature clusters were identified, and a high-risk prognosis cluster was recognized for further analysis. Notably, mutation signature cluster 1 (MSC1) was featured by activated anti-tumor immune and metabolism dysfunctional states, higher genomic instability (high TMB, SNV neoantigen, indel neoantigens, and total neoantigens), and a dismal prognosis. Notably, MSC performed as an independent risk factor than clinical traits (eg, stage, vascular invasion). Additionally, afatinib and canertinib were recognized which might have potential therapeutic implications in MSC1, and the targets of these drugs presented a higher expression in both gene and protein levels in HCC. Discussion: Our studies may provide a promising platform for improving prognosis and tailoring therapy in HCC.

3.
Mol Cancer ; 22(1): 35, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797756

RESUMO

The incidence and mortality of cancer are the major health issue worldwide. Apart from the treatments developed to date, the unsatisfactory therapeutic effects of cancers have not been addressed by broadening the toolbox. The advent of immunotherapy has ushered in a new era in the treatments of solid tumors, but remains limited and requires breaking adverse effects. Meanwhile, the development of advanced technologies can be further boosted by gene analysis and manipulation at the molecular level. The advent of cutting-edge genome editing technology, especially clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), has demonstrated its potential to break the limits of immunotherapy in cancers. In this review, the mechanism of CRISPR-Cas9-mediated genome editing and a powerful CRISPR toolbox are introduced. Furthermore, we focus on reviewing the impact of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy (knockout or knockin). Finally, we discuss the CRISPR-Cas9-based genome-wide screening for target identification, emphasis the potential of spatial CRISPR genomics, and present the comprehensive application and challenges in basic research, translational medicine and clinics of CRISPR-Cas9.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Terapia Genética , Edição de Genes , Imunoterapia , Neoplasias/genética , Neoplasias/terapia
4.
Cell Mol Life Sci ; 79(11): 577, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316529

RESUMO

Recently, immunotherapy has gained increasing popularity in oncology. Several immunotherapies obtained remarkable clinical effects, but the efficacy varied, and only subsets of cancer patients benefited. Breaking the constraints and improving immunotherapy efficacy is extremely important in precision medicine. Whereas traditional sequencing approaches mask the characteristics of individual cells, single-cell sequencing provides multiple dimensions of cellular characterization at the single-cell level, including genomic, transcriptomic, epigenomic, proteomic, and multi-omics. Hence, the complexity of the tumor microenvironment, the universality of tumor heterogeneity, cell composition and cell-cell interactions, cell lineage tracking, and tumor drug resistance mechanisms are revealed in-depth. However, the clinical transformation of single-cell technology is not to the point of in-depth study, especially in the application of immunotherapy. The newly discovered vital cells and tremendous biomarkers facilitate the development of more efficient individualized therapeutic regimens to guide clinical treatment and predict prognosis. This review provided an overview of the progress in distinct single-cell sequencing methods and emerging strategies. For perspective, the expanding utility of combining single-cell sequencing and other technologies was discussed.


Assuntos
Neoplasias , Proteômica , Humanos , Imunoterapia/métodos , Microambiente Tumoral/genética , Medicina de Precisão/métodos , Neoplasias/genética , Neoplasias/terapia , Biomarcadores Tumorais , Análise de Célula Única
5.
Int Immunopharmacol ; 111: 109173, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35998502

RESUMO

Circulating tumor DNA (ctDNA) sequencing holds considerable promise for early diagnosis and detection of surveillance and minimal residual disease. Blood ctDNA monitors specific cancers by detecting the alterations found in cancer cells, such as apoptosis and necrosis. Due to the short half-life, ctDNA reflects the actual burden of other treatments on tumors. In addition, ctDNA might be preferable to monitor tumor development and treatment compared with invasive tissue biopsy. ctDNA-based liquid biopsy brings remarkable strength to targeted therapy and precision medicine. Notably, multiple ctDNA analysis platforms have been broadly applied in clinical immunotherapy. Through targeted sequencing, early variations in ctDNA could predict response to immune checkpoint inhibitor (ICI). Several studies have demonstrated a correlation between ctDNA kinetics and anti-PD1 antibodies. The need for further research and development remains, although this biomarker holds significant prospects for early cancer detection. This review focuses on describing the basis of ctDNA and its current utilities in oncology and immunotherapy, either for clinical management or early detection, highlighting its advantages and inherent limitations.


Assuntos
DNA Tumoral Circulante , Neoplasias , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/análise , DNA Tumoral Circulante/genética , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA