Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
PLoS Genet ; 12(12): e1006490, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27973599

RESUMO

Environmental fluctuations affect distribution, growth and abundance of diatoms in nature, with iron (Fe) availability playing a central role. Studies on the response of diatoms to low Fe have either utilized continuous (24 hr) illumination or sampled a single time of day, missing any temporal dynamics. We profiled the physiology, metabolite composition, and global transcripts of the pennate diatom Phaeodactylum tricornutum during steady-state growth at low, intermediate, and high levels of dissolved Fe over light:dark cycles, to better understand fundamental aspects of genetic control of physiological acclimation to growth under Fe-limitation. We greatly expand the catalog of genes involved in the low Fe response, highlighting the importance of intracellular trafficking in Fe-limited diatoms. P. tricornutum exhibited transcriptomic hallmarks of slowed growth leading to prolonged periods of cell division/silica deposition, which could impact biogeochemical carbon sequestration in Fe-limited regions. Light harvesting and ribosome biogenesis transcripts were generally reduced under low Fe while transcript levels for genes putatively involved in the acquisition and recycling of Fe were increased. We also noted shifts in expression towards increased synthesis and catabolism of branched chain amino acids in P. tricornutum grown at low Fe whereas expression of genes involved in central core metabolism were relatively unaffected, indicating that essential cellular function is protected. Beyond the response of P. tricornutum to low Fe, we observed major coordinated shifts in transcript control of primary and intermediate metabolism over light:dark cycles which contribute to a new view of the significance of distinctive diatom pathways, such as mitochondrial glycolysis and the ornithine-urea cycle. This study provides new insight into transcriptional modulation of diatom physiology and metabolism across light:dark cycles in response to Fe availability, providing mechanistic understanding for the ability of diatoms to remain metabolically poised to respond quickly to Fe input and revealing strategies underlying their ecological success.


Assuntos
Diatomáceas/metabolismo , Ferro/metabolismo , Fotoperíodo , Transcriptoma/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Cloroplastos/genética , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Expressão Gênica , Ferro/farmacologia , Redes e Vias Metabólicas/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos
3.
Vet Microbiol ; 118(3-4): 240-6, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16979852

RESUMO

To analyze further the role in virulence of the prominent cholesterol oxidase (ChoE) of Rhodococcus equi, an allelic exchange choE mutant from strain 103+ was constructed and assessed for virulence in macrophages, in mice, and in foals. There was no difference between the mutant and parent strain in cytotoxic activity for macrophages or in intra-macrophage multiplication. No evidence of attenuation was obtained in macrophages and in mice, but there was slight attenuation apparent in four intra-bronchially infected foals compared to infection of four foals with the virulent parent strain, based on a delayed rise in temperature of the choE-mutant infected foals. However, bacterial colony counts in the lung 2 weeks after infection were not significantly different, although there was a slight but non-significant (P=0.12) difference in lung:body weight ratio of the choE mutant versus virulent parent infected foals (mean 2.67+/-0.25% compared to 4.58+/-0.96%). We conclude that the cholesterol oxidase is not important for the virulence of R. equi.


Assuntos
Infecções por Actinomycetales/veterinária , Colesterol Oxidase/genética , Colesterol Oxidase/metabolismo , Macrófagos/microbiologia , Rhodococcus equi , Infecções por Actinomycetales/microbiologia , Animais , Feminino , Doenças dos Cavalos/microbiologia , Cavalos , Camundongos , Camundongos Endogâmicos , Rhodococcus equi/enzimologia , Rhodococcus equi/genética , Rhodococcus equi/patogenicidade , Fatores de Tempo , Virulência/genética
4.
Infect Immun ; 73(10): 6736-41, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16177351

RESUMO

Rhodococcus equi is an important pathogen of foals, causing severe pyogranulomatous pneumonia. Virulent R. equi strains grow within macrophages, a process which remains poorly characterized. A potential source of carbon for intramacrophage R. equi is membrane lipid-derived fatty acids, which following beta oxidation are assimilated via the glyoxylate bypass. To assess the importance of isocitrate lyase, the first enzyme of the glyoxylate bypass, in virulence of a foal isolate of R. equi, a mutant was constructed by a strategy of single homologous recombination using a suicide plasmid containing an internal fragment of the R. equi aceA gene encoding isocitrate lyase. Complementation of the resulting mutant with aceA showed that the mutant was specific for this gene. Assessment of virulence in a mouse macrophage cell line showed that the mutant was killed, in contrast to the parent strain. Studies in the liver of intravenously infected mice showed enhanced clearance of the mutant. When four 3-week-old foals were infected intrabronchially, the aceA mutant was completely attenuated, in contrast to the parent strain. In conclusion, the aceA gene was shown to be essential for virulence of R. equi, suggesting that membrane lipids may be an important source of carbon for phagocytosed R. equi.


Assuntos
Infecções por Actinomycetales/microbiologia , Proteínas de Bactérias/metabolismo , Isocitrato Liase/metabolismo , Rhodococcus equi/enzimologia , Rhodococcus equi/patogenicidade , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Proliferação de Células , Feminino , Isocitrato Liase/genética , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Pneumonia Bacteriana/microbiologia , Rhodococcus equi/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA