Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sci Robot ; 8(82): eadg6042, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37729423

RESUMO

A major advantage of surgical robots is that they can reduce the invasiveness of a procedure by enabling the clinician to manipulate tools as they would in open surgery but through small incisions in the body. Neurosurgery has yet to benefit from this advantage. Although clinical robots are available for the least invasive neurosurgical procedures, such as guiding electrode insertion, the most invasive brain surgeries, such as tumor resection, are still performed as open manual procedures. To investigate whether robotics could reduce the invasiveness of major brain surgeries while still providing the manipulation capabilities of open surgery, we created a two-armed joystick-controlled endoscopic robot. To evaluate the efficacy of this robot, we developed a set of neurosurgical skill tasks patterned after the steps of brain tumor resection. We also created a patient-derived brain model for pineal tumors, which are located in the center of the brain and are normally removed by open surgery. In comparison, testing with existing manual endoscopic instrumentation, we found that the robot provided access to a much larger working volume at the trocar tip and enabled bimanual tasks without compression of brain tissue adjacent to the trocar. Furthermore, many tasks could be completed faster with the robot. These results suggest that robotics has the potential to substantially reduce the invasiveness of brain surgery by enabling certain procedures currently performed as open surgery to be converted to endoscopic interventions.


Assuntos
Robótica , Humanos , Neurocirurgiões , Extremidade Superior , Mãos , Endoscópios
2.
J Thorac Cardiovasc Surg ; 166(3): 679-687.e1, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37156367

RESUMO

OBJECTIVES: We sought to develop an ex vivo trachea model capable of producing mild, moderate, and severe tracheobronchomalacia for optimizing airway stent design. We also aimed to determine the amount of cartilage resection required for achieving different tracheobronchomalacia grades that can be used in animal models. METHODS: We developed an ex vivo trachea test system that enabled video-based measurement of internal cross-sectional area as intratracheal pressure was cyclically varied for peak negative pressures of 20 to 80 cm H2O. Fresh ovine tracheas were induced with tracheobronchomalacia by single mid-anterior incision (n = 4), mid-anterior circumferential cartilage resection of 25% (n = 4), and 50% per cartilage ring (n = 4) along an approximately 3-cm length. Intact tracheas (n = 4) were used as control. All experimental tracheas were mounted and experimentally evaluated. In addition, helical stents of 2 different pitches (6 mm and 12 mm) and wire diameters (0.52 mm and 0.6 mm) were tested in tracheas with 25% (n = 3) and 50% (n = 3) circumferentially resected cartilage rings. The percentage collapse in tracheal cross-sectional area was calculated from the recorded video contours for each experiment. RESULTS: Ex vivo tracheas compromised by single incision and 25% and 50% circumferential cartilage resection produce tracheal collapse corresponding to clinical grades of mild, moderate, and severe tracheobronchomalacia, respectively. A single anterior cartilage incision produces saber-sheath type tracheobronchomalacia, whereas 25% and 50% circumferential cartilage resection produce circumferential tracheobronchomalacia. Stent testing enabled the selection of stent design parameters such that airway collapse associated with moderate and severe tracheobronchomalacia could be reduced to conform to, but not exceed, that of intact tracheas (12-mm pitch, 0.6-mm wire diameter). CONCLUSIONS: The ex vivo trachea model is a robust platform that enables systematic study and treatment of different grades and morphologies of airway collapse and tracheobronchomalacia. It is a novel tool for optimization of stent design before advancing to in vivo animal models.


Assuntos
Broncoscopia , Traqueobroncomalácia , Ovinos , Animais , Traqueobroncomalácia/diagnóstico , Traqueobroncomalácia/cirurgia , Traqueia/cirurgia , Stents , Modelos Animais
3.
World Neurosurg ; 176: 127-139, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36639101

RESUMO

Intraoperative MRI has been increasingly used to robotically deliver electrodes and catheters into the human brain using a linear trajectory with great clinical success. Current cranial MR guided robotics do not allow for continuous real-time imaging during the procedure because most surgical instruments are not MR-conditional. MRI guided robotic cranial surgery can achieve its full potential if all the traditional advantages of robotics (such as tremor-filtering, precision motion scaling, etc.) can be incorporated with the neurosurgeon physically present in the MRI bore or working remotely through controlled robotic arms. The technological limitations of design optimization, choice of sensing, kinematic modeling, physical constraints, and real-time control had hampered early developments in this emerging field, but continued research and development in these areas over time has granted neurosurgeons far greater confidence in using cranial robotic techniques. This article elucidates the role of MR-guided robotic procedures using clinical devices like NeuroBlate and Clearpoint that have several thousands of cases operated in a "linear cranial trajectory" and planned clinical trials, such as LAANTERN for MR guided robotics in cranial neurosurgery using LITT and MR-guided putaminal delivery of AAV2 GDNF in Parkinson's disease. The next logical improvisation would be a steerable curvilinear trajectory in cranial robotics with added DOFs and distal tip dexterity to the neurosurgical tools. Similarly, the novel concept of robotic actuators that are powered, imaged, and controlled by the MRI itself is discussed in this article, with its potential for seamless cranial neurosurgery.


Assuntos
Neurocirurgia , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Procedimentos Neurocirúrgicos/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Imageamento por Ressonância Magnética
5.
Sci Robot ; 6(60): eabi8017, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34757801

RESUMO

Robotics is a forward-looking discipline. Attention is focused on identifying the next grand challenges. In an applied field such as medical robotics, however, it is important to plan the future based on a clear understanding of what the research community has recently accomplished and where this work stands with respect to clinical needs and commercialization. This Review article identifies and analyzes the eight key research themes in medical robotics over the past decade. These thematic areas were identified using search criteria that identified the most highly cited papers of the decade. Our goal for this Review article is to provide an accessible way for readers to quickly appreciate some of the most exciting accomplishments in medical robotics over the past decade; for this reason, we have focused only on a small number of seminal papers in each thematic area. We hope that this article serves to foster an entrepreneurial spirit in researchers to reduce the widening gap between research and translation.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica/tendências , Pesquisa Translacional Biomédica/tendências , História do Século XXI , Humanos , Laparoscopia , Desenho de Prótese , Publicações , Pesquisadores , Robótica/história , Pesquisa Translacional Biomédica/história
6.
Artigo em Inglês | MEDLINE | ID: mdl-32331821

RESUMO

OBJECTIVES: We sought to demonstrate in an animal model that helical stents made from a nickel titanium alloy called nitinol (NiTi) and designed for malacic airways could be delivered and removed without significant trauma while minimally impeding mucus clearance during the period of implantation. METHODS: Stents were delivered and removed from the tracheas of healthy 20 kg swine (n = 5) using tools designed to minimize trauma. In 4-week experiments, the stents were implanted on day 0, removed after 3 weeks, and swine were put to death after 4 weeks. Weekly bronchoscopies, radiographs, and mucus clearance examinations were performed in vivo. Hematoxylin and eosin staining and scanning electron microscopy imaging were used to evaluate foreign body response, tracheal tissue reaction, and damage and to measure unciliated regions. RESULTS: In all in vivo experiments, the stent was implanted and removed atraumatically. Mucus clearance was maintained throughout the experiment period. Hematoxylin and eosin-stained slides showed that foreign body response and tracheal tissue damage were localized to the stented subsections. Tracheal tissue reaction and damage was further restricted to the epithelium and submucosal layers. Scanning electron microscopy imaging revealed that the cilia were absent only over the contact area between the trachea and the wire forming the helical stent. CONCLUSIONS: Helical nitinol stents designed to provide radial support for malacic airways were well tolerated in a porcine model, providing for mucus clearance while also enabling atraumatic removal.

7.
IEEE Trans Biomed Eng ; 67(1): 177-184, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30990171

RESUMO

OBJECTIVE: The goal was to develop a pediatric airway stent for treating tracheobronchomalacia that could be used as an alternative to positive pressure ventilation. The design goals were for the stent to allow mucus flow and to resist migration inside the airways, while also enabling easy insertion and removal. METHODS: A helical stent design, together with insertion and removal tools, is presented. A mechanics model of stent compression is derived to assist in selecting stent design parameters (pitch and wire diameter) that provide the desired amount of tracheal support, while introducing the minimal amount of foreign material into the airway. Worst-case airway area reduction with stent support is investigated experimentally using a pressurized tracheal phantom matched to porcine tracheal tissue properties. The stent design is then evaluated in a porcine in vivo experiment. RESULTS: Phantom testing validated the mechanics model of stent compression. In vivo testing demonstrated that the stent was well tolerated by the animal. Since the helical design covers only a small portion of the epithelium, mucus transport through the stented region was minimally impeded. Furthermore, the screw-like stent resisted migration, while also providing for atraumatic removal through the use of an unscrewing motion during removal. CONCLUSION: The proposed stent design and tools represent a promising approach to prevent airway collapse in children with tracheobronchomalacia. SIGNIFICANCE: The proposed technology overcomes the limitations of existing airway stents and may provide an alternative to maintaining children on a ventilator.


Assuntos
Manuseio das Vias Aéreas/instrumentação , Manuseio das Vias Aéreas/métodos , Remoção de Dispositivo/métodos , Stents , Traqueia , Animais , Muco , Imagens de Fantasmas , Desenho de Prótese , Suínos , Traqueia/diagnóstico por imagem , Traqueia/fisiologia , Traqueia/cirurgia , Traqueobroncomalácia/terapia
8.
J Thorac Cardiovasc Surg ; 158(5): 1332-1340, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31005306

RESUMO

OBJECTIVE: We sought to develop an instrument that would enable the delivery of artificial chordae tendineae (ACT) using optical visualization of the leaflet inside the beating heart. METHODS: A delivery instrument was developed together with an ACT anchor system. The instrument incorporates an optically clear silicone grasping surface in which are embedded a camera and LED for direct leaflet visualization during localization, grasping, and chordal delivery. ACTs, comprised of T-shaped anchors and an expanded polytetrafluoroethylene chordae, were fabricated to enable testing in a porcine model. Ex vivo experiments were used to measure the anchor tear-out force from the mitral leaflets. In vivo experiments were performed in which the mitral leaflets were accessed transapically using only optical guidance and ACTs were deployed in the posterior and anterior leaflets (P2 and A2 segments). RESULTS: In 5 porcine ex vivo experiments, the mean force required to tear the anchors from the leaflets was 3.8 ± 1.2 N. In 5 porcine in vivo nonsurvival procedures, 14 ACTs were successfully placed in the leaflets (9 in P2 and 5 in A2). ACT implantation took an average of 3.22 ± 0.83 minutes from entry to exit through the apex. CONCLUSIONS: Optical visualization of the mitral leaflet during chordal placement is feasible and provides direct feedback to the operator throughout the deployment sequence. This enables visual confirmation of the targeted leaflet location, distance from the free edge, and successful deployment of the chordal anchor. Further studies are needed to refine and assess the device for clinical use.


Assuntos
Cordas Tendinosas/cirurgia , Implante de Prótese de Valva Cardíaca/instrumentação , Próteses Valvulares Cardíacas/normas , Imagem Óptica/métodos , Animais , Desenho de Equipamento , Implante de Prótese de Valva Cardíaca/métodos , Teste de Materiais/métodos , Valva Mitral/cirurgia , Prolapso da Valva Mitral/cirurgia , Modelos Anatômicos , Cirurgia Assistida por Computador/instrumentação , Cirurgia Assistida por Computador/métodos , Suínos
9.
Oper Neurosurg (Hagerstown) ; 16(2): 217-225, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29733426

RESUMO

BACKGROUND: Bilateral anterior cingulotomy has been used to treat chronic pain, obsessive compulsive disorder, and addictions. Lesioning of the target area is typically performed using bilateral stereotactic electrode placement and target ablation, which involves transparenchymal access through both hemispheres. OBJECTIVE: To evaluate an endoscopic direct-vision lesioning using a unilateral parasagittal minicraniotomy for minimally invasive bilateral anterior cingulotomy using a novel multiport endoscope through the anterior interhemispheric fissure. METHODS: A novel multiport magnetic resonance imaging (MRI)-compatible neuroendoscope prototype is used to demonstrate cadaveric cingulate lesioning through a lateral imaging port while simultaneously viewing the pericallosal arteries as landmarks through a tip imaging port. The lateral port enables extended lesioning of the gyrus while rotation of the endoscope about its axis provides access to homologous areas of both hemispheres. RESULTS: Cadaver testing confirmed the capability to navigate the multiport neuroendoscope between the hemispheres using concurrent imaging from the tip and lateral ports. The lateral port enabled exploration of the gyrus, visualization of lesioning, and subsequent inspection of lesions. Tip-port imaging provided navigational cues and allowed the operator to ensure that the endoscope tip did not contact tissue. The multiport design required instrument rotation in the coronal plane of only 20° to lesion both gyri, while a standard endoscope necessitated a rotation of 54°. CONCLUSION: Multiport MRI-compatible endoscopy can be effectively used in cisternal endoscopy, whereby a unilateral parasagittal minicraniotomy can be used for endoscopic interhemispheric bilateral anterior cingulotomy.


Assuntos
Giro do Cíngulo/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Neuroendoscópios , Neuroendoscopia/métodos , Cirurgia Assistida por Computador/métodos , Pontos de Referência Anatômicos , Cadáver , Craniotomia , Humanos , Imageamento por Ressonância Magnética
10.
Med Biol Eng Comput ; 56(3): 453-467, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28808900

RESUMO

We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.


Assuntos
Especificidade de Órgãos , Instrumentos Cirúrgicos , Ultrassom , Animais , Coração/diagnóstico por imagem , Imageamento Tridimensional , Sus scrofa , Transdutores
11.
IEEE Trans Robot ; 33(1): 22-37, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28966566

RESUMO

Robotic instruments based on concentric tube technology are well suited to minimally invasive surgery since they are slender, can navigate inside small cavities and can reach around sensitive tissues by taking on shapes of varying curvature. Elastic instabilities can arise, however, when rotating one precurved tube inside another. In contrast to prior work that considered only tubes of piecewise constant precurvature, we allow precurvature to vary along the tube's arc length. Stability conditions for a planar tube pair are derived and used to formulate an optimal design problem. An analytic formulation of the optimal precurvature function is derived that achieves a desired tip orientation range while maximizing stability and respecting bending strain limits. This formulation also includes straight transmission segments at the proximal ends of the tubes. The result, confirmed by both numerical and physical experiment, enables designs with enhanced stability in comparison to designs of constant precurvature.

12.
Interact Cardiovasc Thorac Surg ; 25(5): 785-792, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29049565

RESUMO

OBJECTIVES: This paper provides detailed instructions for constructing low-cost bioprosthetic semilunar valves for animal research and clinical training. This work fills an important gap between existing simulator training valves and clinical valves by providing fully functioning designs that can be employed in ex vivo and in vivo experiments and can also be modified to model valvular disease. METHODS: Valves are constructed in 4 steps consisting of creating a metal frame, covering it with fabric and attaching a suture ring and leaflets. Computer-aided design files are provided for making the frame from wire or by metal 3D printing. The covering fabric and suturing ring are made from materials readily available in a surgical lab, while the leaflets are made from pericardium. The entire fabrication process is described in figures and in a video. To demonstrate disease modelling, design modifications are described for producing paravalvular leaks, and these valves were evaluated in porcine ex vivo (n = 3) and in vivo (n = 6) experiments. RESULTS: Porcine ex vivo and acute in vivo experiments demonstrate that the valves can replicate the performance of clinical valves for research and training purposes. Surgical implantation is similar, and echocardiograms are comparable to clinical valves. Furthermore, valve leaflet function was satisfactory during acute in vivo tests with little central regurgitation, while the paravalvular leak modifications consistently produced leaks in the desired locations. CONCLUSIONS: The detailed design procedure presented here, which includes a tutorial video and computer-aided design files, should be of substantial benefit to researchers developing valve disease models and to clinicians developing realistic valve training systems.


Assuntos
Bioprótese/economia , Cardiologia/educação , Desenho Assistido por Computador , Educação Médica/métodos , Doenças das Valvas Cardíacas/cirurgia , Implante de Prótese de Valva Cardíaca/educação , Próteses Valvulares Cardíacas , Animais , Valva Aórtica/cirurgia , Análise Custo-Benefício , Modelos Animais de Doenças , Ecocardiografia , Doenças das Valvas Cardíacas/economia , Humanos , Pericárdio/transplante , Desenho de Prótese , Suínos
13.
Ann Thorac Surg ; 104(3): 1074-1079, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28838487

RESUMO

PURPOSE: There remains a paucity of direct visualization techniques for beating-heart intracardiac procedures. To address this need, we evaluated a novel cardioscope in the context of aortic paravalvular leaks (PVLs) localization and closure. DESCRIPTION: A porcine aortic PVL model was created using a custom-made bioprosthetic valve, and PVL presence was verified by epicardial echocardiography. Transapical delivery of occlusion devices guided solely by cardioscopy was attempted 13 times in a total of three pigs. Device retrieval after release was attempted six times. Echocardiography, morphologic evaluation, and delivery time were used to assess results. EVALUATION: Cardioscopic imaging enabled localization of PVLs via visualization of regurgitant jet flow in a paravalvular channel at the base of the prosthetic aortic valve. Occluders were successfully placed in 11 of 13 attempts (84.6%), taking on average 3:03 ± 1:34 min. Devices were cardioscopically removed successfully in three of six attempts (50%), taking 3:41 ± 1:46 min. No damage to the ventricle or annulus was observed at necropsy. CONCLUSIONS: Cardioscopy can facilitate intracardiac interventions by providing direct visualization of anatomic structures inside the blood-filled, beating-heart model.


Assuntos
Insuficiência da Valva Aórtica/cirurgia , Cateterismo Cardíaco/métodos , Procedimentos Cirúrgicos Cardíacos/métodos , Endoscopia/métodos , Próteses Valvulares Cardíacas/efeitos adversos , Insuficiência da Valva Mitral/cirurgia , Animais , Insuficiência da Valva Aórtica/diagnóstico , Modelos Animais de Doenças , Ecocardiografia Tridimensional , Ecocardiografia Transesofagiana , Insuficiência da Valva Mitral/diagnóstico , Falha de Prótese , Reoperação/métodos , Suínos
14.
Neurosurg Focus ; 41(3): E13, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27581309

RESUMO

OBJECTIVE Rigid endoscopes enable minimally invasive access to the ventricular system; however, the operative field is limited to the instrument tip, necessitating rotation of the entire instrument and causing consequent tissue compression while reaching around corners. Although flexible endoscopes offer tip steerability to address this limitation, they are more difficult to control and provide fewer and smaller working channels. A middle ground between these instruments-a rigid endoscope that possesses multiple instrument ports (for example, one at the tip and one on the side)-is proposed in this article, and a prototype device is evaluated in the context of a third ventricular colloid cyst resection combined with septostomy. METHODS A prototype neuroendoscope was designed and fabricated to include 2 optical ports, one located at the instrument tip and one located laterally. Each optical port includes its own complementary metal-oxide semiconductor (CMOS) chip camera, light-emitting diode (LED) illumination, and working channels. The tip port incorporates a clear silicone optical window that provides 2 additional features. First, for enhanced safety during tool insertion, instruments can be initially seen inside the window before they extend from the scope tip. Second, the compliant tip can be pressed against tissue to enable visualization even in a blood-filled field. These capabilities were tested in fresh porcine brains. The image quality of the multiport endoscope was evaluated using test targets positioned at clinically relevant distances from each imaging port, comparing it with those of clinical rigid and flexible neuroendoscopes. Human cadaver testing was used to demonstrate third ventricular colloid cyst phantom resection through the tip port and a septostomy performed through the lateral port. To extend its utility in the treatment of periventricular tumors using MR-guided laser therapy, the device was designed to be MR compatible. Its functionality and compatibility inside a 3-T clinical scanner were also tested in a brain from a freshly euthanized female pig. RESULTS Testing in porcine brains confirmed the multiport endoscope's ability to visualize tissue in a blood-filled field and to operate inside a 3-T MRI scanner. Cadaver testing confirmed the device's utility in operating through both of its ports and performing combined third ventricular colloid cyst resection and septostomy with an endoscope rotation of less than 5°. CONCLUSIONS The proposed design provides freedom in selecting both the number and orientation of imaging and instrument ports, which can be customized for each ventricular pathological entity. The lightweight, easily manipulated device can provide added steerability while reducing the potential for the serious brain distortion that happens with rigid endoscope navigation. This capability would be particularly valuable in treating hydrocephalus, both primary and secondary (due to tumors, cysts, and so forth). Magnetic resonance compatibility can aid in endoscope-assisted ventricular aqueductal plasty and stenting, the management of multiloculated complex hydrocephalus, and postinflammatory hydrocephalus in which scarring obscures the ventricular anatomy.


Assuntos
Desenho de Equipamento/normas , Imageamento por Ressonância Magnética/normas , Neuroendoscópios/normas , Neuroendoscopia/normas , Maleabilidade , Animais , Desenho de Equipamento/métodos , Feminino , Humanos , Neuroendoscopia/instrumentação , Neuroendoscopia/métodos , Suínos
15.
Sci Rep ; 6: 33567, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27666666

RESUMO

Magnetic resonance navigation (MRN) offers the potential for real-time steering of drug particles and cells to targets throughout the body. In this technique, the magnetic gradients of an MRI scanner perform image-based steering of magnetically-labelled therapeutics through the vasculature and into tumours. A major challenge of current techniques for MRN is that they alternate between pulse sequences for particle imaging and propulsion. Since no propulsion occurs while imaging the particles, this results in a significant reduction in imaging frequency and propulsive force. We report a new approach in which an imaging sequence is designed to simultaneously image and propel particles. This sequence provides a tradeoff between maximum propulsive force and imaging frequency. In our reported example, the sequence can image at 27 Hz while still generating 95% of the force produced by a purely propulsive pulse sequence. We implemented our pulse sequence on a standard clinical scanner using millimetre-scale particles and demonstrated high-speed (74 mm/s) navigation of a multi-branched vascular network phantom. Our study suggests that the magnetic gradient magnitudes previously demonstrated to be sufficient for pure propulsion of micron-scale therapeutics in magnetic resonance targeting (MRT) could also be sufficient for real-time steering of these particles.

16.
IEEE ASME Trans Mechatron ; 21(1): 584-590, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26951754

RESUMO

This paper describes an instrument that provides solutions to two open challenges in beating-heart intracardiac surgery - providing high-fidelity imaging of tool-tissue contact and controlling tool penetration into tissue over the cardiac cycle. Tool delivery is illustrated in the context of tissue removal for which these challenges equate to visualization of the tissue as it is being removed and to control of cutting depth. Cardioscopic imaging is provided by a camera and illumination system encased in an optical window. When the optical window is pressed against tissue, it displaces the blood between the camera and tissue allowing clear visualization. Control of cutting depth is achieved via precise extension of the cutting tool from a port in the optical window. Successful tool use is demonstrated in ex vivo and in vivo experiments.

17.
IEEE Trans Biomed Eng ; 63(6): 1116-28, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26441407

RESUMO

Concentric tube robots, which are comprised of precurved elastic tubes that are concentrically arranged, are being developed for many medical interventions. The shape of the robot is determined by the rotation and translation of the tubes relative to each other, and also by any external forces applied by the environment. As the tubes rotate and translate relative to each other, elastic potential energy caused by tube bending and twisting can accumulate; if a configuration is not locally elastically stable, then a dangerous snapping motion may occur as energy is suddenly released. External loads on the robot also influence elastic stability. In this paper, we provide a second-order sufficient condition, and also a separate necessary condition, for elastic stability. Using methods of optimal control theory, we show that these conditions apply to general concentric tube robot designs subject to arbitrary conservative external loads. They can be used to assess the stability of candidate robot configurations. Our results are validated via comparison with other known stability criteria, and their utility is demonstrated by an application to stable path planning.


Assuntos
Procedimentos Cirúrgicos Robóticos/instrumentação , Algoritmos , Fenômenos Biomecânicos , Elasticidade , Desenho de Equipamento
18.
IEEE Trans Robot ; 31(1): 67-84, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26380575

RESUMO

Concentric tube robots are catheter-sized continuum robots that are well suited for minimally invasive surgery inside confined body cavities. These robots are constructed from sets of pre-curved superelastic tubes and are capable of assuming complex 3D curves. The family of 3D curves that the robot can assume depends on the number, curvatures, lengths and stiffnesses of the tubes in its tube set. The robot design problem involves solving for a tube set that will produce the family of curves necessary to perform a surgical procedure. At a minimum, these curves must enable the robot to smoothly extend into the body and to manipulate tools over the desired surgical workspace while respecting anatomical constraints. This paper introduces an optimization framework that utilizes procedureor patient-specific image-based anatomical models along with surgical workspace requirements to generate robot tube set designs. The algorithm searches for designs that minimize robot length and curvature and for which all paths required for the procedure consist of stable robot configurations. Two mechanics-based kinematic models are used. Initial designs are sought using a model assuming torsional rigidity. These designs are then refined using a torsionally-compliant model. The approach is illustrated with clinically relevant examples from neurosurgery and intracardiac surgery.

19.
Biomed Microdevices ; 17(3): 9962, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26009273

RESUMO

This paper reports the design and development of a novel millimeter-sized robotic system for targeted therapy. The proposed medical robot is conceived to perform therapy in relatively small diameter body canals (spine, urinary system, ovary, etc.), and to release several kinds of therapeutics, depending on the pathology to be treated. The robot is a nearly-buoyant bi-component system consisting of a carrier, in which the therapeutic agent is embedded, and a piston. The piston, by exploiting magnetic effects, docks with the carrier and compresses a drug-loaded hydrogel, thus activating the release mechanism. External magnetic fields are exploited to propel the robot towards the target region, while intermagnetic forces are exploited to trigger drug release. After designing and fabricating the robot, the system has been tested in vitro with an anticancer drug (doxorubicin) embedded in the carrier. The efficiency of the drug release mechanism has been demonstrated by both quantifying the amount of drug released and by assessing the efficacy of this therapeutic procedure on human bladder cancer cells.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Bombas de Infusão Implantáveis , Dispositivos Lab-On-A-Chip , Imãs , Robótica/instrumentação , Neoplasias da Bexiga Urinária/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Campos Magnéticos , Miniaturização , Neoplasias da Bexiga Urinária/patologia
20.
Circ Cardiovasc Interv ; 6(4): 468-75, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23899870

RESUMO

BACKGROUND: Beating-heart image-guided intracardiac interventions have been evolving rapidly. To extend the domain of catheter-based and transcardiac interventions into reconstructive surgery, a new robotic tool delivery platform and a tissue approximation device have been developed. Initial results using these tools to perform patent foramen ovale closure are described. METHODS AND RESULTS: A robotic tool delivery platform comprising superelastic metal tubes provides the capability of delivering and manipulating tools and devices inside the beating heart. A new device technology is also presented that uses a metal-based microelectromechanical systems-manufacturing process to produce fully assembled and fully functional millimeter-scale tools. As a demonstration of both technologies, patent foramen ovale creation and closure was performed in a swine model. In the first group of animals (n=10), a preliminary study was performed. The procedural technique was validated with a transcardiac hand-held delivery platform and epicardial echocardiography, video-assisted cardioscopy, and fluoroscopy. In the second group (n=9), the procedure was performed percutaneously using the robotic tool delivery platform under epicardial echocardiography and fluoroscopy imaging. All patent foramen ovales were completely closed in the first group. In the second group, the patent foramen ovale was not successfully created in 1 animal, and the defects were completely closed in 6 of the 8 remaining animals. CONCLUSIONS: In contrast to existing robotic catheter technologies, the robotic tool delivery platform uses a combination of stiffness and active steerability along its length to provide the positioning accuracy and force-application capability necessary for tissue manipulation. In combination with a microelectromechanical systems tool technology, it can enable reconstructive procedures inside the beating heart.


Assuntos
Forame Oval Patente/cirurgia , Robótica/instrumentação , Animais , Cateterismo Cardíaco , Modelos Animais de Doenças , Fluoroscopia , Metais , Procedimentos de Cirurgia Plástica , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA