Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 21(9): 1131-1148, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32638523

RESUMO

New Zealand kauri is an ancient, iconic, gymnosperm tree species that is under threat from a lethal dieback disease caused by the oomycete Phytophthora agathidicida. To gain insight into this pathogen, we determined whether proteinaceous effectors of P. agathidicida interact with the immune system of a model angiosperm, Nicotiana, as previously shown for Phytophthora pathogens of angiosperms. From the P. agathidicida genome, we defined and analysed a set of RXLR effectors, a class of proteins that typically have important roles in suppressing or activating the plant immune system. RXLRs were screened for their ability to activate or suppress the Nicotiana plant immune system using Agrobacterium tumefaciens transient transformation assays. Nine P. agathidicida RXLRs triggered cell death or suppressed plant immunity in Nicotiana, of which three were expressed in kauri. For the most highly expressed, P. agathidicida (Pa) RXLR24, candidate cognate immune receptors associated with cell death were identified in Nicotiana benthamiana using RNA silencing-based approaches. Our results show that RXLRs of a pathogen of gymnosperms can interact with the immune system of an angiosperm species. This study provides an important foundation for studying the molecular basis of plant-pathogen interactions in gymnosperm forest trees, including kauri.


Assuntos
Araucariaceae/parasitologia , Genoma/genética , Interações Hospedeiro-Patógeno , Phytophthora/genética , Doenças das Plantas/parasitologia , Proteínas/metabolismo , Araucariaceae/imunologia , Cycadopsida/imunologia , Cycadopsida/parasitologia , Nova Zelândia , Filogenia , Phytophthora/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Proteínas/genética , Interferência de RNA , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/parasitologia
2.
Fungal Genet Biol ; 135: 103300, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31730909

RESUMO

The detrimental effect of fungal pathogens on forest trees is an increasingly important problem that has implications for the health of our planet. Despite this, the study of molecular plant-microbe interactions in forest trees is in its infancy, and very little is known about the roles of effector molecules from forest pathogens. Dothistroma septosporum causes a devastating needle blight disease of pines, and intriguingly, is closely related to Cladosporium fulvum, a tomato pathogen in which pioneering effector biology studies have been carried out. Here, we studied D. septosporum effectors that are shared with C. fulvum, by comparing gene sequences from global isolates of D. septosporum and assessing effector function in both host and non-host plants. Many of the effectors were predicted to be non-functional in D. septosporum due to their pseudogenization or low expression in planta, suggesting adaptation to lifestyle and host. Effector sequences were polymorphic among a global collection of D. septosporum isolates, but there was no evidence for positive selection. The DsEcp2-1 effector elicited cell death in the non-host plant Nicotiana tabacum, whilst D. septosporum DsEcp2-1 mutants showed increased colonization of pine needles. Together these results suggest that DsEcp2-1 might be recognized by an immune receptor in both angiosperm and gymnosperm plants. This work may lead to the identification of plant targets for DsEcp2-1 that will provide much needed information on the molecular basis of gymnosperm-pathogen interactions in forests, and may also lead to novel methods of disease control.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Ascomicetos/genética , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno/genética , Pinus/microbiologia , Ascomicetos/patogenicidade , Proteínas Fúngicas/metabolismo , Pinus/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Nicotiana/microbiologia , Virulência
3.
PLoS One ; 12(9): e0183748, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886068

RESUMO

Epichloë grass endophytes comprise a group of filamentous fungi of both sexual and asexual species. Known for the beneficial characteristics they endow upon their grass hosts, the identification of these endophyte species has been of great interest agronomically and scientifically. The use of simple sequence repeat loci and the variation in repeat elements has been used to rapidly identify endophyte species and strains, however, little is known of how the structure of repeat elements changes between species and strains, and where these repeat elements are located in the fungal genome. We report on an in-depth analysis of the structure and genomic location of the simple sequence repeat locus B10, commonly used for Epichloë endophyte species identification. The B10 repeat was found to be located within an exon of a putative bZIP transcription factor, suggesting possible impacts on polypeptide sequence and thus protein function. Analysis of this repeat in the asexual endophyte hybrid Epichloë uncinata revealed that the structure of B10 alleles reflects the ancestral species that hybridized to give rise to this species. Understanding the structure and sequence of these simple sequence repeats provides a useful set of tools for readily distinguishing strains and for gaining insights into the ancestral species that have undergone hybridization events.


Assuntos
Epichloe/genética , Repetições de Microssatélites/genética , Endófitos/genética , Genoma/genética , Hibridização Genética/genética , Peptídeos/genética
4.
BMC Bioinformatics ; 16: 8, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25592117

RESUMO

BACKGROUND: Forming a new species through the merger of two or more divergent parent species is increasingly seen as a key phenomenon in the evolution of many biological systems. However, little is known about how expression of parental gene copies (homeologs) responds following genome merger. High throughput RNA sequencing now makes this analysis technically feasible, but tools to determine homeolog expression are still in their infancy. RESULTS: Here we present HyLiTE - a single-step analysis to obtain tables of homeolog expression in a hybrid or allopolyploid and its parent species directly from raw mRNA sequence files. By implementing on-the-fly detection of diagnostic parental polymorphisms, HyLiTE can perform SNP calling and read classification simultaneously, thus allowing HyLiTE to be run as parallelized code. HyLiTE accommodates any number of parent species, multiple data sources (including genomic DNA reads to improve SNP detection), and implements a statistical framework optimized for genes with low to moderate expression. CONCLUSIONS: HyLiTE is a flexible and easy-to-use program designed for bench biologists to explore patterns of gene expression following genome merger. HyLiTE offers practical advantages over manual methods and existing programs, has been designed to accommodate a wide range of genome merger systems, can identify SNPs that arose following genome merger, and offers accurate performance on non-model organisms.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Poliploidia , Análise de Sequência de DNA/métodos , Software , Animais , Fungos/genética , Carpa Dourada/genética , Gossypium/genética , Hibridização Genética , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA