Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 30(10): 2042-2056, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34398513

RESUMO

DNA supercoiling controls a variety of cellular processes, including transcription, recombination, chromosome replication, and segregation, across all domains of life. As a physical property, DNA supercoiling alters the double helix structure by under- or over-winding it. Intriguingly, the evolution of DNA supercoiling reveals both similarities and differences in its properties and regulation across the three domains of life. Whereas all organisms exhibit local, constrained DNA supercoiling, only bacteria and archaea exhibit unconstrained global supercoiling. DNA supercoiling emerges naturally from certain cellular processes and can also be changed by enzymes called topoisomerases. While structurally and mechanistically distinct, topoisomerases that dissipate excessive supercoils exist in all domains of life. By contrast, topoisomerases that introduce positive or negative supercoils exist only in bacteria and archaea. The abundance of topoisomerases is also transcriptionally and post-transcriptionally regulated in domain-specific ways. Nucleoid-associated proteins, metabolites, and physicochemical factors influence DNA supercoiling by acting on the DNA itself or by impacting the activity of topoisomerases. Overall, the unique strategies that organisms have evolved to regulate DNA supercoiling hold significant therapeutic potential, such as bactericidal agents that target bacteria-specific processes or anticancer drugs that hinder abnormal DNA replication by acting on eukaryotic topoisomerases specialized in this process. The investigation of DNA supercoiling therefore reveals general principles, conserved mechanisms, and kingdom-specific variations relevant to a wide range of biological questions.


Assuntos
Archaea , Bactérias , Replicação do DNA , DNA Arqueal , DNA Bacteriano , DNA Super-Helicoidal , Evolução Molecular , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , DNA Arqueal/biossíntese , DNA Arqueal/genética , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , DNA Super-Helicoidal/biossíntese , DNA Super-Helicoidal/genética
2.
J Biol Eng ; 8: 19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25104972

RESUMO

BACKGROUND: Metal contamination is widespread and results from natural geogenic and constantly increasing anthropogenic sources (mainly mining and extraction activities, electroplating, battery and steel manufacturing or metal finishing). Consequently, there is a growing need for methods to detoxify polluted ecosystems. Industrial wastewater, surface water and ground water need to be decontaminated to alleviate the contamination of soils and sediments and, ultimately, the human food chain. In nuclear power plants, radioactive metals are produced; these metals need to be removed from effluents before they are released into the environment, not only for pollution prevention but also for waste minimization. Many physicochemical methods have been developed for metal removal from aqueous solutions, including chemical coagulation, adsorption, extraction, ion exchange and membrane separation; however, these methods are generally not metal selective. Bacteria, because they contain metal transporters, provide a potentially competitive alternative to the current use of expensive and high-volume ion-exchange resins. RESULTS: The feasibility of using bacterial biofilters as efficient tools for nickel and cobalt ions specific remediation was investigated. Among the factors susceptible to genetic modification in Escherichia coli, specific efflux and sequestration systems were engineered to improve its metal sequestration abilities. Genomic suppression of the RcnA nickel (Ni) and cobalt (Co) efflux system was combined with the plasmid-controlled expression of a genetically improved version of a specific metallic transporter, NiCoT, which originates from Novosphingobium aromaticivorans. The resulting strain exhibited enhanced nickel (II) and cobalt (II) uptake, with a maximum metal ion accumulation of 6 mg/g bacterial dry weight during 10 min of treatment. A synthetic adherence operon was successfully introduced into the plasmid carrying the improved NiCoT transporter, conferring the ability to form thick biofilm structures, especially when exposed to nickel and cobalt metallic compounds. CONCLUSIONS: This study demonstrates the efficient use of genetic engineering to increase metal sequestration and biofilm formation by E. coli. This method allows Co and Ni contaminants to be sequestered while spatially confining the bacteria to an abiotic support. Biofiltration of nickel (II) and cobalt (II) by immobilized cells is therefore a promising option for treating these contaminants at an industrial scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA