Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34439480

RESUMO

Epigenetic aberrations are linked to sporadic breast cancer. Interestingly, certain dietary polyphenols with anti-cancer effects, such as pterostilbene (PTS), have been shown to regulate gene expression by altering epigenetic patterns. Our group has proposed the involvement of DNA methylation and DNA methyltransferase 3B (DNMT3B) as vital players in PTS-mediated suppression of candidate oncogenes and suggested a role of enhancers as target regions. In the present study, we assess a genome-wide impact of PTS on epigenetic marks at enhancers in highly invasive MCF10CA1a breast cancer cells. Following chromatin immunoprecipitation (ChIP)-sequencing in MCF10CA1a cells treated with 7 µM PTS for 9 days, we discovered that PTS leads to increased binding of DNMT3B at enhancers of 77 genes, and 17 of those genes display an overlapping decrease in the occupancy of trimethylation at lysine 36 of histone 3 (H3K36me3), a mark of active enhancers. We selected two genes, PITPNC1 and LINC00910, and found that their enhancers are hypermethylated in response to PTS. These changes coincided with the downregulation of gene expression. Of importance, we showed that 6 out of 17 target enhancers, including PITPNC1 and LINC00910, are bound by an oncogenic transcription factor OCT1 in MCF10CA1a cells. Indeed, the six enhancers corresponded to genes with established or putative cancer-driving functions. PTS led to a decrease in OCT1 binding at those enhancers, and OCT1 depletion resulted in PITPNC1 and LINC00910 downregulation, further demonstrating a role for OCT1 in transcriptional regulation. Our findings provide novel evidence for the epigenetic regulation of enhancer regions by dietary polyphenols in breast cancer cells.

2.
J Nutr Biochem ; 98: 108815, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34242723

RESUMO

Transcription factor (TF)-mediated regulation of genes is often disrupted during carcinogenesis. The DNA methylation state of TF-binding sites may dictate transcriptional activity of corresponding genes. Stilbenoid polyphenols, such as pterostilbene (PTS), have been shown to exert anticancer action by remodeling DNA methylation and gene expression. However, the mechanisms behind these effects still remain unclear. Here, the dynamics between oncogenic TF OCT1 binding and de novo DNA methyltransferase DNMT3B binding in PTS-treated MCF10CA1a invasive breast cancer cells has been explored. Using chromatin immunoprecipitation (ChIP) followed by next generation sequencing, we determined 47 gene regulatory regions with decreased OCT1 binding and enriched DNMT3B binding in response to PTS. Most of those genes were found to have oncogenic functions. We selected three candidates, PRKCA, TNNT2, and DANT2, for further mechanistic investigation taking into account PRKCA functional and regulatory connection with numerous cancer-driving processes and pathways, and some of the highest increase in DNMT3B occupancy within TNNT2 and DANT2 enhancers. PTS led to DNMT3B recruitment within PRKCA, TNNT2, and DANT2 at loci that also displayed reduced OCT1 binding. Substantial decrease in OCT1 with increased DNMT3B binding was accompanied by PRKCA promoter and TNNT2 and DANT2 enhancer hypermethylation, and gene silencing. Interestingly, DNA hypermethylation of the genes was not detected in response to PTS in DNMT3B-CRISPR knockout MCF10CA1a breast cancer cells. It indicates DNMT3B-dependent methylation of PRKCA, TNNT2, and DANT2 upon PTS. Our findings provide a better understanding of mechanistic players and their gene targets that possibly contribute to the anticancer action of stilbenoid polyphenols.


Assuntos
Neoplasias da Mama/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Oncogenes/genética , Transportador 1 de Cátions Orgânicos/metabolismo , Estilbenos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Regiões Promotoras Genéticas , Estilbenos/metabolismo , DNA Metiltransferase 3B
3.
PLoS One ; 15(8): e0237884, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841243

RESUMO

The Solanum tuberosum plant specific insert (StPSI) has a defensive role in potato plants, with the requirements of acidic pH and anionic lipids. The StPSI contains a set of three highly conserved disulfide bonds that bridge the protein's helical domains. Removal of these bonds leads to enhanced membrane interactions. This work examined the effects of their sequential removal, both individually and in combination, using all-atom molecular dynamics to elucidate the role of disulfide linkages in maintaining overall protein tertiary structure. The tertiary structure was found to remain stable at both acidic (active) and neutral (inactive) pH despite the removal of disulfide linkages. The findings include how the dimer structure is stabilized and the impact on secondary structure on a residue-basis as a function of disulfide bond removal. The StPSI possesses an extensive network of inter-monomer hydrophobic interactions and intra-monomer hydrogen bonds, which is likely the key to the stability of the StPSI by stabilizing local secondary structure and the tertiary saposin-fold, leading to a robust association between monomers, regardless of the disulfide bond state. Removal of disulfide bonds did not significantly impact secondary structure, nor lead to quaternary structural changes. Instead, disulfide bond removal induces regions of amino acids with relatively higher or lower variation in secondary structure, relative to when all the disulfide bonds are intact. Although disulfide bonds are not required to preserve overall secondary structure, they may have an important role in maintaining a less plastic structure within plant cells in order to regulate membrane affinity or targeting.


Assuntos
Dissulfetos/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Plantas/metabolismo , Saposinas/metabolismo , Solanum tuberosum/metabolismo , Cisteína/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Plantas/química , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Sais/química , Enxofre/metabolismo
4.
J Agric Food Chem ; 63(48): 10448-58, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26479447

RESUMO

Cranberry beans from regular (RR) and nondarkening (CND) genotypes were pressure cooked, and free, conjugated, and bound phenolics were analyzed. Simulated in vitro gastrointestinal digestion was used to assess the bioaccessibility of these phenolic fractions. Total phenolic content decreased after cooking and digestion, whereas individual phenolic compounds were affected differently. Cooking significantly increased the release of bound ferulic and sinapic acids and flavanols, whereas digestion released p-coumaric, ferulic, and sinapic acids in both genotypes, and p-hydroxybenzoic acid, epicatechin, and catechin in only RR. Bioaccessibility of phenolics in RR and CND was 8.75 and 14.69%, respectively. Difference in total phenolics was smaller after digestion, and enzymes potentially secreted by colonic bacteria released similar amounts of phenolic acids in both varieties. Resistant and slowly digestible starch contents showed no differences between RR and CND. These results suggest that the lower phenolic content in raw CND may not completely negate its impact on gut health.


Assuntos
Digestão , Phaseolus/metabolismo , Fenóis/química , Antioxidantes , Culinária , Humanos , Phaseolus/química , Fenóis/metabolismo , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA