Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 14(4): e09824, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35352880

RESUMO

Single domain antibodies (VHHs) are potentially disruptive therapeutics, with important biological value for treatment of several diseases, including neurological disorders. However, VHHs have not been widely used in the central nervous system (CNS), largely because of their restricted blood-brain barrier (BBB) penetration. Here, we propose a gene transfer strategy based on BBB-crossing adeno-associated virus (AAV)-based vectors to deliver VHH directly into the CNS. As a proof-of-concept, we explored the potential of AAV-delivered VHH to inhibit BACE1, a well-characterized target in Alzheimer's disease. First, we generated a panel of VHHs targeting BACE1, one of which, VHH-B9, shows high selectivity for BACE1 and efficacy in lowering BACE1 activity in vitro. We further demonstrate that a single systemic dose of AAV-VHH-B9 produces positive long-term (12 months plus) effects on amyloid load, neuroinflammation, synaptic function, and cognitive performance, in the AppNL-G-F Alzheimer's mouse model. These results constitute a novel therapeutic approach for neurodegenerative diseases, which is applicable to a range of CNS disease targets.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Anticorpos de Domínio Único , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/imunologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/imunologia , Ácido Aspártico Endopeptidases/metabolismo , Barreira Hematoencefálica , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/uso terapêutico , Camundongos , Camundongos Transgênicos
2.
Gene Ther ; 25(2): 83-92, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29523880

RESUMO

Until recently, adeno-associated virus 9 (AAV9) was considered the AAV serotype most effective in crossing the blood-brain barrier (BBB) and transducing cells of the central nervous system (CNS), following systemic injection. However, a newly engineered capsid, AAV-PHP.B, is reported to cross the BBB at even higher efficiency. We investigated how much we could boost CNS transgene expression by using AAV-PHP.B carrying a self-complementary (sc) genome. To allow comparison, 6 weeks old C57BL/6 mice received intravenous injections of scAAV2/9-GFP or scAAV2/PHP.B-GFP at equivalent doses. Three weeks postinjection, transgene expression was assessed in brain and spinal cord. We consistently observed more widespread CNS transduction and higher levels of transgene expression when using the scAAV2/PHP.B-GFP vector. In particular, we observed an unprecedented level of astrocyte transduction in the cortex, when using a ubiquitous CBA promoter. In comparison, neuronal transduction was much lower than previously reported. However, strong neuronal expression (including spinal motor neurons) was observed when the human synapsin promoter was used. These findings constitute the first reported use of an AAV-PHP.B capsid, encapsulating a scAAV genome, for gene transfer in adult mice. Our results underscore the potential of this AAV construct as a platform for safer and more efficacious gene therapy vectors for the CNS.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Neurônios/metabolismo , Transdução Genética , Animais , Encéfalo/citologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Sinapsinas/genética , Transgenes
3.
J Biol Chem ; 292(21): 8874-8891, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28373281

RESUMO

Astrocytes are a major cell type in the mammalian CNS. Astrocytes are now known to play a number of essential roles in processes including synapse formation and function, as well as blood-brain barrier formation and control of cerebral blood flow. However, our understanding of the molecular mechanisms underlying astrocyte development and function is still rudimentary. This lack of knowledge is at least partly due to the lack of tools currently available for astrocyte biology. ACSA-2 is a commercially available antibody originally developed for the isolation of astrocytes from young postnatal mouse brain, using magnetic cell-sorting methods, but its utility in isolating cells from adult tissue has not yet been published. Using a modified protocol, we now show that this tool can also be used to isolate ultrapure astrocytes from the adult brain. Furthermore, using a variety of techniques (including single-cell sequencing, overexpression and knockdown assays, immunoblotting, and immunohistochemistry), we identify the ACSA-2 epitope for the first time as ATP1B2 and characterize its distribution in the CNS. Finally, we show that ATP1B2 is stably expressed in multiple models of CNS injury and disease. Hence, we show that the ACSA-2 antibody possesses the potential to be an extremely valuable tool for astrocyte research, allowing the purification and characterization of astrocytes (potentially including injury and disease models) without the need for any specialized and expensive equipment. In fact, our results suggest that ACSA-2 should be a first-choice method for astrocyte isolation and characterization.


Assuntos
Adenosina Trifosfatases , Anticorpos/química , Astrócitos/metabolismo , Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte de Cátions , Moléculas de Adesão Celular Neuronais , Epitopos , Regulação da Expressão Gênica , Adenosina Trifosfatases/biossíntese , Adenosina Trifosfatases/química , Animais , Astrócitos/patologia , Encéfalo/patologia , Lesões Encefálicas/patologia , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Transporte de Cátions/química , Moléculas de Adesão Celular Neuronais/biossíntese , Moléculas de Adesão Celular Neuronais/química , Modelos Animais de Doenças , Epitopos/biossíntese , Epitopos/química , Feminino , Masculino , Camundongos
4.
Ann Neurol ; 77(3): 399-414, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25516063

RESUMO

OBJECTIVES: Spinal muscular atrophy (SMA) is caused by reduced levels of survival motor neuron (SMN) protein, which results in motoneuron loss. Therapeutic strategies to increase SMN levels including drug compounds, antisense oligonucleotides, and scAAV9 gene therapy have proved effective in mice. We wished to determine whether reduction of SMN in postnatal motoneurons resulted in SMA in a large animal model, whether SMA could be corrected after development of muscle weakness, and the response of clinically relevant biomarkers. METHODS: Using intrathecal delivery of scAAV9 expressing an shRNA targeting pig SMN1, SMN was knocked down in motoneurons postnatally to SMA levels. This resulted in an SMA phenotype representing the first large animal model of SMA. Restoration of SMN was performed at different time points with scAAV9 expressing human SMN (scAAV9-SMN), and electrophysiology measurements and pathology were performed. RESULTS: Knockdown of SMN in postnatal motoneurons results in overt proximal weakness, fibrillations on electromyography indicating active denervation, and reduced compound muscle action potential (CMAP) and motor unit number estimation (MUNE), as in human SMA. Neuropathology showed loss of motoneurons and motor axons. Presymptomatic delivery of scAAV9-SMN prevented SMA symptoms, indicating that all changes are SMN dependent. Delivery of scAAV9-SMN after symptom onset had a marked impact on phenotype, electrophysiological measures, and pathology. INTERPRETATION: High SMN levels are critical in postnatal motoneurons, and reduction of SMN results in an SMA phenotype that is SMN dependent. Importantly, clinically relevant biomarkers including CMAP and MUNE are responsive to SMN restoration, and abrogation of phenotype can be achieved even after symptom onset.


Assuntos
Modelos Animais de Doenças , Terapia Genética/métodos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/terapia , Proteínas do Complexo SMN/metabolismo , Animais , Biomarcadores , Dependovirus/genética , Eletromiografia , Vetores Genéticos/uso terapêutico , Humanos , Neurônios Motores/patologia , Atrofia Muscular Espinal/etiologia , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/fisiopatologia , Fenótipo , RNA Interferente Pequeno/uso terapêutico , Proteínas do Complexo SMN/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA