Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 260: 112692, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39151234

RESUMO

The overuse of antimicrobial agents in medical and veterinary applications has led to the development of antimicrobial resistance in some microorganisms and this is now one of the major concerns in modern society. In this context, the use of transition metal complexes with photoactivatable properties, which can act as drug delivery systems triggered by light, could become a potent strategy to overcome the problem of resistance. In this work several Ru complexes with terpyridine ligands and the clotrimazole fragment, which is a potent antimycotic drug, were synthesized. The main goal was to explore the potential photoactivated activity of the complexes as antifungal agents and evaluate the effect of introducing different substituents on the terpyridine ligand. The complexes were capable of delivering the clotrimazole unit upon irradiation with visible light in a short period of time. The influence of the substituents on the photodissociation rate was explained by means of TD-DFT calculations. The complexes were tested against three different yeasts, which were selected based on their prevalence in fungal infections. The complex in which a carboxybenzene unit was attached to the terpyridine ligand showed the best activity against the three species under light, with minimal inhibitory concentration values of 0.88 µM and a phototoxicity index of 50 achieved. The activity of this complex was markedly higher than that of free clotrimazole, especially upon irradiation with visible light (141 times higher). The complexes were more active on yeast species than on cancer cell lines.


Assuntos
Antifúngicos , Clotrimazol , Complexos de Coordenação , Testes de Sensibilidade Microbiana , Piridinas , Rutênio , Clotrimazol/farmacologia , Clotrimazol/química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Rutênio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Piridinas/química , Piridinas/farmacologia , Humanos , Luz , Candida albicans/efeitos dos fármacos
2.
Eur J Med Chem ; 276: 116618, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972079

RESUMO

Ir(III) and Ru(II) polypyridyl complexes are promising photosensitizers (PSs) for photodynamic therapy (PDT) due to their outstanding photophysical properties. Herein, one series of cyclometallated Ir(III) complexes and two series of Ru(II) polypyridyl derivatives bearing three different thiazolyl-ß-carboline N^N' ligands have been synthesized, aiming to evaluate the impact of the different metal fragments ([Ir(C^N)2]+ or [Ru(N^N)2]2+) and N^N' ligands on the photophysical and biological properties. All the compounds exhibit remarkable photostability under blue-light irradiation and are emissive (605 < λem < 720 nm), with the Ru(II) derivatives displaying higher photoluminescence quantum yields and longer excited state lifetimes. The Ir PSs display pKa values between 5.9 and 7.9, whereas their Ru counterparts are less acidic (pKa > 9.3). The presence of the deprotonated form in the Ir-PSs favours the generation of reactive oxygen species (ROS) since, according to theoretical calculations, it features a low-lying ligand-centered triplet excited state (T1 = 3LC) with a long lifetime. All compounds have demonstrated anticancer activity. Ir(III) complexes 1-3 exhibit the highest cytotoxicity in dark conditions, comparable to cisplatin. Their activity is notably enhanced by blue-light irradiation, resulting in nanomolar IC50 values and phototoxicity indexes (PIs) between 70 and 201 in different cancer cell lines. The Ir(III) PSs are also activated by green (with PI between 16 and 19.2) and red light in the case of complex 3 (PI = 8.5). Their antitumor efficacy is confirmed by clonogenic assays and using spheroid models. The Ir(III) complexes rapidly enter cells, accumulating in mitochondria and lysosomes. Upon photoactivation, they generate ROS, leading to mitochondrial dysfunction and lysosomal damage and ultimately cell apoptosis. Additionally, they inhibit cancer cell migration, a crucial step in metastasis. In contrast, Ru(II) complex 6 exhibits moderate mitochondrial activity. Overall, Ir(III) complexes 1-3 show potential for selective light-controlled cancer treatment, providing an alternative mechanism to chemotherapy and the ability to inhibit lethal cancer cell dissemination.


Assuntos
Antineoplásicos , Carbolinas , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Irídio , Fotoquimioterapia , Fármacos Fotossensibilizantes , Rutênio , Humanos , Irídio/química , Irídio/farmacologia , Rutênio/química , Rutênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Carbolinas/química , Carbolinas/farmacologia , Carbolinas/síntese química , Estrutura Molecular , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Piridinas/química , Piridinas/farmacologia , Piridinas/síntese química , Espécies Reativas de Oxigênio/metabolismo , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos
3.
J Med Chem ; 67(3): 1783-1811, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38291666

RESUMO

One approach to reduce the side effects of chemotherapy in cancer treatment is photodynamic therapy (PDT), which allows spatiotemporal control of the cytotoxicity. We have used the strategy of coordinating π-expansive ligands to increase the excited state lifetimes of Ir(III) half-sandwich complexes in order to facilitate the generation of 1O2. We have obtained derivatives of formulas [Cp*Ir(C∧N)Cl] and [Cp*Ir(C∧N)L]BF4 with different degrees of π-expansion in the C∧N ligands. Complexes with the more π-expansive ligand are very effective photosensitizers with phototoxic indexes PI > 2000. Furthermore, PI values of 63 were achieved with red light. Time-dependent density functional theory (TD-DFT) calculations nicely explain the effect of the π-expansion. The complexes produce reactive oxygen species (ROS) at the cellular level, causing mitochondrial membrane depolarization, cleavage of DNA, nicotinamide adenine dinucleotide (NADH) oxidation, as well as lysosomal damage. Consequently, cell death by apoptosis and secondary necrosis is activated. Thus, we describe the first class of half-sandwich iridium cyclometalated complexes active in PDT.


Assuntos
Antineoplásicos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Antineoplásicos/farmacologia , Ligantes , Linhagem Celular Tumoral , Irídio/farmacologia
4.
J Biol Inorg Chem ; 28(6): 531-547, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37458856

RESUMO

In the treatment of hormone-dependent cancers, aromatase inhibitors (AI) are receiving increased attention due to some undesirable effects such as the risk of endometrial cancer and thromboembolism of SERMs (selective estrogen receptor modulators). Letrozole is the most active AI with 99% aromatase inhibition. Unfortunately, this compound also exhibits some adverse effects such as hot flashes and fibromyalgias. Therefore, there is an urgent need to explore new types of AIs that retain the same-or even increased-antitumor ability. Inspired by the letrozole structure, a set of new derivatives has been synthesized that include a ferrocenyl moiety and different heterocycles. The derivative that contains a benzimidazole ring, namely compound 6, exhibits a higher aromatase inhibitory activity than letrozole and it also shows potent cytostatic behavior when compared to other well-established aromatase inhibitors, as demonstrated by dose-response, cell cycle, apoptosis and time course experiments. Furthermore, 6 promotes the inhibition of cell growth in both an aromatase-dependent and -independent fashion, as indicated by the study of A549 and MCF7 cell lines. Molecular docking and molecular dynamics calculations on the interaction of 6 or letrozole with the aromatase binding site revealed that the ferrocene moiety increases the van der Waals and hydrophobic interactions, thus resulting in an increase in binding affinity. Furthermore, the iron atom of the ferrocene fragment can form a metal-acceptor interaction with a propionate fragment, and this results in a stronger coupling with the heme group-a possibility that is consistent with the strong aromatase inhibition of 6.


Assuntos
Neoplasias da Mama , Citostáticos , Humanos , Feminino , Letrozol/farmacologia , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Aromatase/metabolismo , Metalocenos , Simulação de Acoplamento Molecular , Nitrilas/farmacologia , Triazóis/farmacologia , Células MCF-7
5.
J Inorg Biochem ; 218: 111403, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33730639

RESUMO

The problems of resistance and side effects associated with cisplatin and other chemotherapeutic drugs have boosted research aimed at finding new compounds with improved properties. The use of platinum(IV) prodrugs is one alternative, although there is some controversy regarding the predictive ability of the peak reduction potentials. In the work described here a series of fourteen chloride Pt(II) and Pt(IV) compounds was synthesised and fully characterised. The compounds contain different bidentate arylazole heterocyclic ligands. Their cytotoxic properties against human lung carcinoma (A549), human breast carcinoma (MCF7) and human colon carcinoma (HCT116 and HT29) cell lines were studied. A clear relationship between the type of ligand and the anti-proliferative properties was found, with the best results obtained for the Pt(II) compound that contains an aniline fragment, (13), thus evidencing a positive effect of the NH2 group. Stability and aquation studies in DMSO, DMF and DMSO/water mixtures were carried out on the active complexes and an in-depth analysis of the two aquation processes, including DFT analysis, of 13 was undertaken. It was verified that DNA was the target and that cell death occurred by apoptosis in the case of 13. Furthermore, the cytotoxic derivatives did not exhibit haemolytic activity. The reduction of the Pt(IV) compounds whose Pt(II) congeners were active was studied by several techniques. It was concluded that the peak reduction potential was not useful to predict the ability for reduction. However, a correlation between the cytotoxic activity and the standard reduction potential was found.


Assuntos
Compostos de Anilina/química , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Platina/química , Pró-Fármacos/farmacologia , Células A549 , Antineoplásicos/química , Apoptose , Proliferação de Células , Células HCT116 , Humanos , Células MCF-7 , Neoplasias/patologia , Compostos Organoplatínicos/química , Pró-Fármacos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA