Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
Cochrane Database Syst Rev ; 7: CD012806, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31260100

RESUMO

BACKGROUND: Melanoma is one of the most aggressive forms of skin cancer, with the potential to metastasise to other parts of the body via the lymphatic system and the bloodstream. Melanoma accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. Various imaging tests can be used with the aim of detecting metastatic spread of disease following a primary diagnosis of melanoma (primary staging) or on clinical suspicion of disease recurrence (re-staging). Accurate staging is crucial to ensuring that patients are directed to the most appropriate and effective treatment at different points on the clinical pathway. Establishing the comparative accuracy of ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET)-CT imaging for detection of nodal or distant metastases, or both, is critical to understanding if, how, and where on the pathway these tests might be used. OBJECTIVES: Primary objectivesWe estimated accuracy separately according to the point in the clinical pathway at which imaging tests were used. Our objectives were:• to determine the diagnostic accuracy of ultrasound or PET-CT for detection of nodal metastases before sentinel lymph node biopsy in adults with confirmed cutaneous invasive melanoma; and• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for whole body imaging in adults with cutaneous invasive melanoma:○ for detection of any metastasis in adults with a primary diagnosis of melanoma (i.e. primary staging at presentation); and○ for detection of any metastasis in adults undergoing staging of recurrence of melanoma (i.e. re-staging prompted by findings on routine follow-up).We undertook separate analyses according to whether accuracy data were reported per patient or per lesion.Secondary objectivesWe sought to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for whole body imaging (detection of any metastasis) in mixed or not clearly described populations of adults with cutaneous invasive melanoma.For study participants undergoing primary staging or re-staging (for possible recurrence), and for mixed or unclear populations, our objectives were:• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of nodal metastases;• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of distant metastases; and• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of distant metastases according to metastatic site. SEARCH METHODS: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included studies of any design that evaluated ultrasound (with or without the use of fine needle aspiration cytology (FNAC)), CT, MRI, or PET-CT for staging of cutaneous melanoma in adults, compared with a reference standard of histological confirmation or imaging with clinical follow-up of at least three months' duration. We excluded studies reporting multiple applications of the same test in more than 10% of study participants. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2)). We estimated accuracy using the bivariate hierarchical method to produce summary sensitivities and specificities with 95% confidence and prediction regions. We undertook analysis of studies allowing direct and indirect comparison between tests. We examined heterogeneity between studies by visually inspecting the forest plots of sensitivity and specificity and summary receiver operating characteristic (ROC) plots. Numbers of identified studies were insufficient to allow formal investigation of potential sources of heterogeneity. MAIN RESULTS: We included a total of 39 publications reporting on 5204 study participants; 34 studies reporting data per patient included 4980 study participants with 1265 cases of metastatic disease, and seven studies reporting data per lesion included 417 study participants with 1846 potentially metastatic lesions, 1061 of which were confirmed metastases. The risk of bias was low or unclear for all domains apart from participant flow. Concerns regarding applicability of the evidence were high or unclear for almost all domains. Participant selection from mixed or not clearly defined populations and poorly described application and interpretation of index tests were particularly problematic.The accuracy of imaging for detection of regional nodal metastases before sentinel lymph node biopsy (SLNB) was evaluated in 18 studies. In 11 studies (2614 participants; 542 cases), the summary sensitivity of ultrasound alone was 35.4% (95% confidence interval (CI) 17.0% to 59.4%) and specificity was 93.9% (95% CI 86.1% to 97.5%). Combining pre-SLNB ultrasound with FNAC revealed summary sensitivity of 18.0% (95% CI 3.58% to 56.5%) and specificity of 99.8% (95% CI 99.1% to 99.9%) (1164 participants; 259 cases). Four studies demonstrated lower sensitivity (10.2%, 95% CI 4.31% to 22.3%) and specificity (96.5%,95% CI 87.1% to 99.1%) for PET-CT before SLNB (170 participants, 49 cases). When these data are translated to a hypothetical cohort of 1000 people eligible for SLNB, 237 of whom have nodal metastases (median prevalence), the combination of ultrasound with FNAC potentially allows 43 people with nodal metastases to be triaged directly to adjuvant therapy rather than having SLNB first, at a cost of two people with false positive results (who are incorrectly managed). Those with a false negative ultrasound will be identified on subsequent SLNB.Limited test accuracy data were available for whole body imaging via PET-CT for primary staging or re-staging for disease recurrence, and none evaluated MRI. Twenty-four studies evaluated whole body imaging. Six of these studies explored primary staging following a confirmed diagnosis of melanoma (492 participants), three evaluated re-staging of disease following some clinical indication of recurrence (589 participants), and 15 included mixed or not clearly described population groups comprising participants at a number of different points on the clinical pathway and at varying stages of disease (1265 participants). Results for whole body imaging could not be translated to a hypothetical cohort of people due to paucity of data.Most of the studies (6/9) of primary disease or re-staging of disease considered PET-CT, two in comparison to CT alone, and three studies examined the use of ultrasound. No eligible evaluations of MRI in these groups were identified. All studies used histological reference standards combined with follow-up, and two included FNAC for some participants. Observed accuracy for detection of any metastases for PET-CT was higher for re-staging of disease (summary sensitivity from two studies: 92.6%, 95% CI 85.3% to 96.4%; specificity: 89.7%, 95% CI 78.8% to 95.3%; 153 participants; 95 cases) compared to primary staging (sensitivities from individual studies ranged from 30% to 47% and specificities from 73% to 88%), and was more sensitive than CT alone in both population groups, but participant numbers were very small.No conclusions can be drawn regarding routine imaging of the brain via MRI or CT. AUTHORS' CONCLUSIONS: Review authors found a disappointing lack of evidence on the accuracy of imaging in people with a diagnosis of melanoma at different points on the clinical pathway. Studies were small and often reported data according to the number of lesions rather than the number of study participants. Imaging with ultrasound combined with FNAC before SLNB may identify around one-fifth of those with nodal disease, but confidence intervals are wide and further work is needed to establish cost-effectiveness. Much of the evidence for whole body imaging for primary staging or re-staging of disease is focused on PET-CT, and comparative data with CT or MRI are lacking. Future studies should go beyond diagnostic accuracy and consider the effects of different imaging tests on disease management. The increasing availability of adjuvant therapies for people with melanoma at high risk of disease spread at presentation will have a considerable impact on imaging services, yet evidence for the relative diagnostic accuracy of available tests is limited.


Assuntos
Melanoma/diagnóstico por imagem , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias Cutâneas/diagnóstico por imagem , Adulto , Diagnóstico por Computador/métodos , Humanos , Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ensaios Clínicos Controlados Aleatórios como Assunto , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X , Ultrassonografia , Melanoma Maligno Cutâneo
3.
Cochrane Database Syst Rev ; 12: CD011901, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30521688

RESUMO

BACKGROUND: Early accurate detection of all skin cancer types is important to guide appropriate management, to reduce morbidity and to improve survival. Basal cell carcinoma (BCC) is almost always a localised skin cancer with potential to infiltrate and damage surrounding tissue, whereas a minority of cutaneous squamous cell carcinomas (cSCCs) and invasive melanomas are higher-risk skin cancers with the potential to metastasise and cause death. Dermoscopy has become an important tool to assist specialist clinicians in the diagnosis of melanoma, and is increasingly used in primary-care settings. Dermoscopy is a precision-built handheld illuminated magnifier that allows more detailed examination of the skin down to the level of the superficial dermis. Establishing the value of dermoscopy over and above visual inspection for the diagnosis of BCC or cSCC in primary- and secondary-care settings is critical to understanding its potential contribution to appropriate skin cancer triage, including referral of higher-risk cancers to secondary care, the identification of low-risk skin cancers that might be treated in primary care and to provide reassurance to those with benign skin lesions who can be safely discharged. OBJECTIVES: To determine the diagnostic accuracy of visual inspection and dermoscopy, alone or in combination, for the detection of (a) BCC and (b) cSCC, in adults. We separated studies according to whether the diagnosis was recorded face-to-face (in person) or based on remote (image-based) assessment. SEARCH METHODS: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. SELECTION CRITERIA: Studies of any design that evaluated visual inspection or dermoscopy or both in adults with lesions suspicious for skin cancer, compared with a reference standard of either histological confirmation or clinical follow-up. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where information related to the target condition or diagnostic thresholds were missing. We estimated accuracy using hierarchical summary ROC methods. We undertook analysis of studies allowing direct comparison between tests. To facilitate interpretation of results, we computed values of sensitivity at the point on the SROC curve with 80% fixed specificity and values of specificity with 80% fixed sensitivity. We investigated the impact of in-person test interpretation; use of a purposely-developed algorithm to assist diagnosis; and observer expertise. MAIN RESULTS: We included 24 publications reporting on 24 study cohorts, providing 27 visual inspection datasets (8805 lesions; 2579 malignancies) and 33 dermoscopy datasets (6855 lesions; 1444 malignancies). The risk of bias was mainly low for the index test (for dermoscopy evaluations) and reference standard domains, particularly for in-person evaluations, and high or unclear for participant selection, application of the index test for visual inspection and for participant flow and timing. We scored concerns about the applicability of study findings as of 'high' or 'unclear' concern for almost all studies across all domains assessed. Selective participant recruitment, lack of reproducibility of diagnostic thresholds and lack of detail on observer expertise were particularly problematic.The detection of BCC was reported in 28 datasets; 15 on an in-person basis and 13 image-based. Analysis of studies by prior testing of participants and according to observer expertise was not possible due to lack of data. Studies were primarily conducted in participants referred for specialist assessment of lesions with available histological classification. We found no clear differences in accuracy between dermoscopy studies undertaken in person and those which evaluated images. The lack of effect observed may be due to other sources of heterogeneity, including variations in the types of skin lesion studied, in dermatoscopes used, or in the use of algorithms and varying thresholds for deciding on a positive test result.Meta-analysis found in-person evaluations of dermoscopy (7 evaluations; 4683 lesions and 363 BCCs) to be more accurate than visual inspection alone for the detection of BCC (8 evaluations; 7017 lesions and 1586 BCCs), with a relative diagnostic odds ratio (RDOR) of 8.2 (95% confidence interval (CI) 3.5 to 19.3; P < 0.001). This corresponds to predicted differences in sensitivity of 14% (93% versus 79%) at a fixed specificity of 80% and predicted differences in specificity of 22% (99% versus 77%) at a fixed sensitivity of 80%. We observed very similar results for the image-based evaluations.When applied to a hypothetical population of 1000 lesions, of which 170 are BCC (based on median BCC prevalence across studies), an increased sensitivity of 14% from dermoscopy would lead to 24 fewer BCCs missed, assuming 166 false positive results from both tests. A 22% increase in specificity from dermoscopy with sensitivity fixed at 80% would result in 183 fewer unnecessary excisions, assuming 34 BCCs missed for both tests. There was not enough evidence to assess the use of algorithms or structured checklists for either visual inspection or dermoscopy.Insufficient data were available to draw conclusions on the accuracy of either test for the detection of cSCCs. AUTHORS' CONCLUSIONS: Dermoscopy may be a valuable tool for the diagnosis of BCC as an adjunct to visual inspection of a suspicious skin lesion following a thorough history-taking including assessment of risk factors for keratinocyte cancer. The evidence primarily comes from secondary-care (referred) populations and populations with pigmented lesions or mixed lesion types. There is no clear evidence supporting the use of currently-available formal algorithms to assist dermoscopy diagnosis.


Assuntos
Carcinoma Basocelular/diagnóstico , Carcinoma de Células Escamosas/diagnóstico , Dermoscopia , Exame Físico/métodos , Neoplasias Cutâneas/diagnóstico , Adulto , Idoso , Algoritmos , Carcinoma Basocelular/diagnóstico por imagem , Carcinoma de Células Escamosas/diagnóstico por imagem , Humanos , Queratinócitos , Pessoa de Meia-Idade , Fotografação , Sensibilidade e Especificidade , Neoplasias Cutâneas/diagnóstico por imagem
4.
Cochrane Database Syst Rev ; 12: CD013186, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30521691

RESUMO

BACKGROUND: Early accurate detection of all skin cancer types is essential to guide appropriate management and to improve morbidity and survival. Melanoma and cutaneous squamous cell carcinoma (cSCC) are high-risk skin cancers which have the potential to metastasise and ultimately lead to death, whereas basal cell carcinoma (BCC) is usually localised with potential to infiltrate and damage surrounding tissue. Anxiety around missing early curable cases needs to be balanced against inappropriate referral and unnecessary excision of benign lesions. Computer-assisted diagnosis (CAD) systems use artificial intelligence to analyse lesion data and arrive at a diagnosis of skin cancer. When used in unreferred settings ('primary care'), CAD may assist general practitioners (GPs) or other clinicians to more appropriately triage high-risk lesions to secondary care. Used alongside clinical and dermoscopic suspicion of malignancy, CAD may reduce unnecessary excisions without missing melanoma cases. OBJECTIVES: To determine the accuracy of CAD systems for diagnosing cutaneous invasive melanoma and atypical intraepidermal melanocytic variants, BCC or cSCC in adults, and to compare its accuracy with that of dermoscopy. SEARCH METHODS: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. SELECTION CRITERIA: Studies of any design that evaluated CAD alone, or in comparison with dermoscopy, in adults with lesions suspicious for melanoma or BCC or cSCC, and compared with a reference standard of either histological confirmation or clinical follow-up. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where information related to the target condition or diagnostic threshold were missing. We estimated summary sensitivities and specificities separately by type of CAD system, using the bivariate hierarchical model. We compared CAD with dermoscopy using (a) all available CAD data (indirect comparisons), and (b) studies providing paired data for both tests (direct comparisons). We tested the contribution of human decision-making to the accuracy of CAD diagnoses in a sensitivity analysis by removing studies that gave CAD results to clinicians to guide diagnostic decision-making. MAIN RESULTS: We included 42 studies, 24 evaluating digital dermoscopy-based CAD systems (Derm-CAD) in 23 study cohorts with 9602 lesions (1220 melanomas, at least 83 BCCs, 9 cSCCs), providing 32 datasets for Derm-CAD and seven for dermoscopy. Eighteen studies evaluated spectroscopy-based CAD (Spectro-CAD) in 16 study cohorts with 6336 lesions (934 melanomas, 163 BCC, 49 cSCCs), providing 32 datasets for Spectro-CAD and six for dermoscopy. These consisted of 15 studies using multispectral imaging (MSI), two studies using electrical impedance spectroscopy (EIS) and one study using diffuse-reflectance spectroscopy. Studies were incompletely reported and at unclear to high risk of bias across all domains. Included studies inadequately address the review question, due to an abundance of low-quality studies, poor reporting, and recruitment of highly selected groups of participants.Across all CAD systems, we found considerable variation in the hardware and software technologies used, the types of classification algorithm employed, methods used to train the algorithms, and which lesion morphological features were extracted and analysed across all CAD systems, and even between studies evaluating CAD systems. Meta-analysis found CAD systems had high sensitivity for correct identification of cutaneous invasive melanoma and atypical intraepidermal melanocytic variants in highly selected populations, but with low and very variable specificity, particularly for Spectro-CAD systems. Pooled data from 22 studies estimated the sensitivity of Derm-CAD for the detection of melanoma as 90.1% (95% confidence interval (CI) 84.0% to 94.0%) and specificity as 74.3% (95% CI 63.6% to 82.7%). Pooled data from eight studies estimated the sensitivity of multispectral imaging CAD (MSI-CAD) as 92.9% (95% CI 83.7% to 97.1%) and specificity as 43.6% (95% CI 24.8% to 64.5%). When applied to a hypothetical population of 1000 lesions at the mean observed melanoma prevalence of 20%, Derm-CAD would miss 20 melanomas and would lead to 206 false-positive results for melanoma. MSI-CAD would miss 14 melanomas and would lead to 451 false diagnoses for melanoma. Preliminary findings suggest CAD systems are at least as sensitive as assessment of dermoscopic images for the diagnosis of invasive melanoma and atypical intraepidermal melanocytic variants. We are unable to make summary statements about the use of CAD in unreferred populations, or its accuracy in detecting keratinocyte cancers, or its use in any setting as a diagnostic aid, because of the paucity of studies. AUTHORS' CONCLUSIONS: In highly selected patient populations all CAD types demonstrate high sensitivity, and could prove useful as a back-up for specialist diagnosis to assist in minimising the risk of missing melanomas. However, the evidence base is currently too poor to understand whether CAD system outputs translate to different clinical decision-making in practice. Insufficient data are available on the use of CAD in community settings, or for the detection of keratinocyte cancers. The evidence base for individual systems is too limited to draw conclusions on which might be preferred for practice. Prospective comparative studies are required that evaluate the use of already evaluated CAD systems as diagnostic aids, by comparison to face-to-face dermoscopy, and in participant populations that are representative of those in which the test would be used in practice.


Assuntos
Carcinoma Basocelular/diagnóstico , Carcinoma de Células Escamosas/diagnóstico , Dermoscopia/métodos , Diagnóstico por Computador/métodos , Impedância Elétrica , Melanoma/diagnóstico , Neoplasias Cutâneas/diagnóstico , Adulto , Algoritmos , Carcinoma Basocelular/diagnóstico por imagem , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/patologia , Tomada de Decisão Clínica , Dermoscopia/normas , Diagnóstico por Computador/normas , Reações Falso-Positivas , Humanos , Melanoma/diagnóstico por imagem , Melanoma/patologia , Sensibilidade e Especificidade , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA