Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Virol ; 95(23): e0095621, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549976

RESUMO

Dengue virus cocirculates globally as four serotypes (DENV1 to -4) that vary up to 40% at the amino acid level. Viral strains within a serotype further cluster into multiple genotypes. Eliciting a protective tetravalent neutralizing antibody response is a major goal of vaccine design, and efforts to characterize epitopes targeted by polyclonal mixtures of antibodies are ongoing. Previously, we identified two E protein residues (126 and 157) that defined the serotype-specific antibody response to DENV1 genotype 4 strain West Pac-74. DENV1 and DENV2 human vaccine sera neutralized DENV1 viruses incorporating these substitutions equivalently. In this study, we explored the contribution of these residues to the neutralization of DENV1 strains representing distinct genotypes. While neutralization of the genotype 1 strain TVP2130 was similarly impacted by mutation at E residues 126 and 157, mutation of these residues in the genotype 2 strain 16007 did not markedly change neutralization sensitivity, indicating the existence of additional DENV1 type-specific antibody targets. The accessibility of antibody epitopes can be strongly influenced by the conformational dynamics of virions and modified allosterically by amino acid variation. We found that changes at E domain II residue 204, shown previously to impact access to a poorly accessible E domain III epitope, impacted sensitivity of DENV1 16007 to neutralization by vaccine immune sera. Our data identify a role for minor sequence variation in changes to the antigenic structure that impacts antibody recognition by polyclonal immune sera. Understanding how the many structures sampled by flaviviruses influence antibody recognition will inform the design and evaluation of DENV immunogens. IMPORTANCE Dengue virus (DENV) is an important human pathogen that cocirculates globally as four serotypes. Because sequential infection by different DENV serotypes is associated with more severe disease, eliciting a protective neutralizing antibody response against all four serotypes is a major goal of vaccine efforts. Here, we report that neutralization of DENV serotype 1 by polyclonal antibody is impacted by minor sequence variation among virus strains. Our data suggest that mechanisms that control neutralization sensitivity extend beyond variation within antibody epitopes but also include the influence of single amino acids on the ensemble of structural states sampled by structurally dynamic virions. A more detailed understanding of the antibody targets of DENV-specific polyclonal sera and factors that govern their access to antibody has important implications for flavivirus antigen design and evaluation.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue , Conformação Molecular , Sorogrupo , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/sangue , Formação de Anticorpos , Dengue , Vacinas contra Dengue/química , Vacinas contra Dengue/imunologia , Epitopos/química , Epitopos/imunologia , Flavivirus , Humanos , Mutação , Taiwan , Proteínas do Envelope Viral , Vírion/metabolismo
2.
JAMA ; 325(24): 2448-2456, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33929487

RESUMO

Importance: Cerebral venous sinus thrombosis (CVST) with thrombocytopenia, a rare and serious condition, has been described in Europe following receipt of the ChAdOx1 nCoV-19 vaccine (Oxford/AstraZeneca), which uses a chimpanzee adenoviral vector. A mechanism similar to autoimmune heparin-induced thrombocytopenia (HIT) has been proposed. In the US, the Ad26.COV2.S COVID-19 vaccine (Janssen/Johnson & Johnson), which uses a human adenoviral vector, received Emergency Use Authorization (EUA) on February 27, 2021. By April 12, 2021, approximately 7 million Ad26.COV2.S vaccine doses had been given in the US, and 6 cases of CVST with thrombocytopenia had been identified among the recipients, resulting in a temporary national pause in vaccination with this product on April 13, 2021. Objective: To describe reports of CVST with thrombocytopenia following Ad26.COV2.S vaccine receipt. Design, Setting, and Participants: Case series of 12 US patients with CVST and thrombocytopenia following use of Ad26.COV2.S vaccine under EUA reported to the Vaccine Adverse Event Reporting System (VAERS) from March 2 to April 21, 2021 (with follow-up reported through April 21, 2021). Exposures: Receipt of Ad26.COV2.S vaccine. Main Outcomes and Measures: Clinical course, imaging, laboratory tests, and outcomes after CVST diagnosis obtained from VAERS reports, medical record review, and discussion with clinicians. Results: Patients' ages ranged from 18 to younger than 60 years; all were White women, reported from 11 states. Seven patients had at least 1 CVST risk factor, including obesity (n = 6), hypothyroidism (n = 1), and oral contraceptive use (n = 1); none had documented prior heparin exposure. Time from Ad26.COV2.S vaccination to symptom onset ranged from 6 to 15 days. Eleven patients initially presented with headache; 1 patient initially presented with back pain and later developed headache. Of the 12 patients with CVST, 7 also had intracerebral hemorrhage; 8 had non-CVST thromboses. After diagnosis of CVST, 6 patients initially received heparin treatment. Platelet nadir ranged from 9 ×103/µL to 127 ×103/µL. All 11 patients tested for the heparin-platelet factor 4 HIT antibody by enzyme-linked immunosorbent assay (ELISA) screening had positive results. All patients were hospitalized (10 in an intensive care unit [ICU]). As of April 21, 2021, outcomes were death (n = 3), continued ICU care (n = 3), continued non-ICU hospitalization (n = 2), and discharged home (n = 4). Conclusions and Relevance: The initial 12 US cases of CVST with thrombocytopenia after Ad26.COV2.S vaccination represent serious events. This case series may inform clinical guidance as Ad26.COV2.S vaccination resumes in the US as well as investigations into the potential relationship between Ad26.COV2.S vaccine and CVST with thrombocytopenia.


Assuntos
Vacinas contra COVID-19/efeitos adversos , Trombose dos Seios Intracranianos/etiologia , Trombocitopenia/etiologia , Adolescente , Adulto , ChAdOx1 nCoV-19 , Cuidados Críticos , Evolução Fatal , Feminino , Cefaleia/etiologia , Humanos , Pessoa de Meia-Idade , Contagem de Plaquetas , Trombose dos Seios Intracranianos/terapia , Trombocitopenia/terapia
3.
Am J Trop Med Hyg ; 103(2): 855-863, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32394880

RESUMO

New dengue vaccines are needed to prevent this globally expanding vector-borne disease. The V180 vaccine candidate consists of four recombinant, soluble, dengue virus envelope glycoproteins and has been previously evaluated in two clinical trials for safety and immunogenicity in Flavivirus-naive participants (NCT01477580 and NCT0093642). Here, we report on a randomized, placebo-controlled, double-blind study of the safety and immunogenicity of the V180 vaccine in subjects who have previously received the live attenuated tetravalent vaccine (LATV) developed by the National Institute of Allergy and Infectious Diseases (protocol #V180-002 [CIR-301]). The study was designed to evaluate whether this recombinant subunit vaccine could boost the neutralizing antibody responses induced by dengue LATV. Twenty participants who had previously received one or two doses of dengue LATV were randomized and received a single dose of V180 nonadjuvanted (N = 8), V180 adjuvanted with Alhydrogel™ (aluminum hydroxide gel, Brenntag Biosector, Frederikssund, Denmark) (N = 8), or placebo (N = 4). Immunogenicity was measured using a plaque reduction neutralization test at days 1, 15, 28, and 180 after vaccination. In addition, vaccine safety (solicited and unsolicited adverse events) was assessed using a vaccination report card for 28 days following vaccination, and serious adverse events were captured from the time of informed consent through the final study visit at 6 months after vaccination. The results of the study demonstrate that the V180 vaccine is generally well tolerated and immunogenic in these dengue-seropositive volunteers.


Assuntos
Vacinas contra Dengue/uso terapêutico , Dengue/prevenção & controle , Imunização Secundária , Adjuvantes Imunológicos/uso terapêutico , Adulto , Hidróxido de Alumínio/uso terapêutico , Anticorpos Neutralizantes/imunologia , Vírus da Dengue/imunologia , Método Duplo-Cego , Feminino , Humanos , Imunogenicidade da Vacina , Reação no Local da Injeção , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Vacinas Atenuadas/uso terapêutico , Vacinas de Subunidades Antigênicas/uso terapêutico , Vacinas Sintéticas/uso terapêutico , Proteínas do Envelope Viral/imunologia , Adulto Jovem
4.
Lancet Infect Dis ; 20(7): 839-850, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220283

RESUMO

BACKGROUND: The Butantan Institute has manufactured a lyophilised tetravalent live-attenuated dengue vaccine Butantan-DV, which is analogous to the US National Institutes of Health (NIH) TV003 admixture. We aimed to assess the safety and immunogenicity of Butantan-DV. METHODS: We did a two-step, double-blind, randomised placebo-controlled phase 2 trial at two clinical sites in São Paulo, Brazil. We recruited healthy volunteers aged 18-59 years; pregnant women, individuals with a history of neurological, heart, lung, liver or kidney disease, diabetes, cancer, or autoimmune diseases, and individuals with HIV or hepatitis C were excluded. Step A was designed as a small bridge-study between Butantan-DV and TV003 in DENV-naive participants. In step A, we planned to randomly assign 50 dengue virus (DENV)-naive individuals to receive two doses of Butantan-DV, TV003, or placebo, given 6 months apart. In step B, we planned to randomly assign 250 participants (DENV-naive and DENV-exposed) to receive one dose of Butantan-DV or placebo. Participants were randomly assigned, by computer-generated block randomisation (block sizes of five); participants in step A were randomly assigned (2:2:1) to receive Butantan-DV, TV003, or placebo and participants in step B were randomly assigned (4:1) to receive Butantan-DV or placebo. Participants and study staff were unaware of treatment allocation. The primary safety outcome was the frequency of solicited and unsolicited local and systemic adverse reactions within 21 days of the first vaccination, analysed by intention to treat. The primary immunogenicity outcome was seroconversion rates of the DENV-1-4 serotypes measured 91 days after the first vaccination, analysed in the per-protocol population, which included all participants in step A, and all participants included in step B who completed all study visits with serology sample collection. This trial is registered with ClinicalTrials.gov, NCT01696422. FINDINGS: Between Nov 5, 2013, and Sept 21, 2015, 300 individuals were enrolled and randomly assigned: 155 (52%) DENV-naive participants and 145 (48%) DENV-exposed participants. Of the 155 DENV-naive participants, 97 (63%) received Butantan-DV, 17 (11%) received TV003, and 41 (27%) received placebo. Of the 145 DENV-exposed participants, 113 (78%) received Butantan-DV, three (2%) received TV003, and 29 (20%) received placebo. Butantan-DV and TV003 were both immunogenic, well-tolerated, and no serious adverse reactions were observed. In step A, rash was the most frequent adverse event (16 [845] of 19 participants in the Butantan-DV group and 13 [76%] of 17 participants in the TV003 group). Viraemia was similar between the Butantan-DV and TV003 groups. Of the 85 DENV-naive participants in the Butantan-DV group who attended all visits for sample collection for seroconversion analysis and thus were included in the per-protocol analysis population, 74 (87%) achieved seroconversion to DENV-1, 78 (92%) to DENV-2, 65 (76%) to DENV-3, and 76 (89%) to DENV-4. Of the 101 DENV-exposed participants in the Butantan-DV group who attended all visits for sample collection for seroconversion analysis, 82 (81%) achieved seroconversion to DENV-1, 79 (78%) to DENV-2, 83 (82%) to DENV-3, and 78 (77%) to DENV-4. INTERPRETATION: Butantan-DV and TV003 were safe and induced robust, balanced neutralising antibody responses against the four DENV serotypes. Efficacy evaluation of the Butantan-DV vaccine is ongoing. FUNDING: Intramural Research Program US NIH National Institute of Allergy and Infectious Diseases, Brazilian National Bank for Economic and Social Development, Fundação de Amparo à Pesquisa do Estado de São Paulo, and Fundação Butantan.


Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Imunogenicidade da Vacina , Vacinas Atenuadas/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Brasil , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Soroconversão , Vacinação , Adulto Jovem
5.
EBioMedicine ; 41: 465-478, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30857944

RESUMO

BACKGROUND: Acute viral infections induce a rapid and transient increase in antibody-secreting plasmablasts. At convalescence, memory B cells (MBC) and long-lived plasma cells (LLPC) are responsible for long-term humoral immunity. Following an acute viral infection, the specific properties and relationships between antibodies produced by these B cell compartments are poorly understood. METHODS: We utilized a controlled human challenge model of primary dengue virus serotype 2 (DENV2) infection to study acute and convalescent B-cell responses. FINDINGS: The level of DENV2 replication was correlated with the magnitude of the plasmablast response. Functional analysis of plasmablast-derived monoclonal antibodies showed that the DENV2-specific response was dominated by cells producing DENV2 serotype-specific antibodies. DENV2-neutralizing antibodies targeted quaternary structure epitopes centered on domain III of the viral envelope protein (EDIII). Functional analysis of MBC and serum antibodies from the same subjects six months post-challenge revealed maintenance of the serotype-specific response in both compartments. The serum response mainly targeted DENV2 serotype-specific epitopes on EDIII. INTERPRETATION: Our data suggest overall functional alignment of DENV2-specific responses from the plasmablast, through the MBC and LLPC compartments following primary DENV2 inflection. These results provide enhanced resolution of the temporal and specificity of the B cell compartment in viral infection and serve as framework for evaluation of B cell responses in challenge models. FUNDING: This study was supported by the Bill and Melinda Gates Foundation and the National Institutes of Health.


Assuntos
Linfócitos B/metabolismo , Dengue/diagnóstico , Doença Aguda , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Mapeamento de Epitopos , Epitopos/imunologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/virologia , Estudos Longitudinais , Plasmócitos/citologia , Plasmócitos/metabolismo , Sorogrupo , Proteínas do Envelope Viral/imunologia
6.
J Infect Dis ; 220(2): 219-227, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30895307

RESUMO

BACKGROUND: Dengue virus is an emerging mosquito-borne flavivirus responsible for considerable morbidity and mortality worldwide. The Division of Intramural Research, National Institute of Allergy and Infectious Diseases of the US National Institutes of Health (NIH) has developed live attenuated vaccines to each of the 4 serotypes of dengue virus (DENV1-4). While overall levels of DENV neutralizing antibodies (nAbs) in humans have been correlated with protection, these correlations vary depending on DENV serotype, prevaccination immunostatus, age, and study site. By combining both the level and molecular specificity of nAbs to each serotype, it may be possible to develop more robust correlates that predict long-term outcome. METHODS: Using depletions and recombinant chimeric epitope transplant DENVs, we evaluate the molecular specificity and mapped specific epitopes and antigenic regions targeted by vaccine-induced nAbs in volunteers who received the NIH monovalent vaccines against each DENV serotype. RESULTS: After monovalent vaccination, subjects developed high levels of nAbs that mainly targeted epitopes that are unique (type-specific) to each DENV serotype. The DENV1, 2, and 4 monovalent vaccines induced type-specific nAbs directed to quaternary structure envelope epitopes known to be targets of strongly neutralizing antibodies induced by wild-type DENV infections. CONCLUSIONS: Our results reported here on the molecular specificity of NIH vaccine-induced antibodies enable new strategies, beyond the absolute levels of nAbs, for determining correlates and mechanisms of protective immunity.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Epitopos/imunologia , Sequência de Aminoácidos , Dengue/virologia , Mapeamento de Epitopos/métodos , Humanos , National Institutes of Health (U.S.) , Sorogrupo , Estados Unidos , Vacinação/métodos , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/imunologia
7.
ACS Infect Dis ; 4(12): 1705-1717, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30347144

RESUMO

Dengue is a mosquito-borne disease caused by four dengue virus serotypes (DENV1-4) that are loosely categorized by sequence commonalities and antibody recognition profiles. The highly variable envelope protein (E) that is prominently displayed on the surface of DENV is an essential component of vaccines currently under development, yet the impact of using single strains to represent each serotype in tetravalent vaccines has not been adequately studied. We synthesized chimeric E by replacing highly variable residues from a dengue virus serotype 2 vaccine strain (PUO-218) with those from 16 DENV2 lineages spanning 60 years of antigen evolution. Examining sera from human and rhesus macaques challenged with single strains of DENV2, antibody-E interactions were markedly inhibited or enhanced by residues mainly focused within a 480 Å2 footprint displayed on the E backbone. The striking impact of E diversity on polyclonal immune responses suggests that frequent antigen updates may be necessary for vaccines to counter shifts in circulating strains.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Adolescente , Adulto , Animais , Anticorpos Neutralizantes/imunologia , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/genética , Feminino , Humanos , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Filogenia , Sorogrupo , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia , Adulto Jovem
8.
Clin Infect Dis ; 61 Suppl 5: S493-500, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26553680

RESUMO

BACKGROUND: The monovalent meningococcal A conjugate vaccine (PsA-TT, MenAfriVac) was developed for use in the "meningitis belt" of sub-Saharan Africa. Mali was 1 of 3 countries selected for early introduction. As this is a new vaccine, postlicensure surveillance is particularly important to identify and characterize possible safety issues. METHODS: The national vaccination campaign was phased from September 2010 to November 2011. We conducted postlicensure safety surveillance for PsA-TT in 40 government clinics from southern Mali serving approximately 400 000 people 1-29 years of age. We conducted analyses with individual-level data and population-level data, and we calculated rates of adverse events using the conditional exact test, a modified vaccine cohort risk interval method, and a modified self-controlled case series method for each outcome of interest, including 18 prespecified adverse events and 18 syndromic categories. RESULTS: An increased rate of clinic visits for fever within 3 days after vaccination was found using multiple methods for all age groups. Although other signals were found with some methods, complete assessment of all other prespecified outcomes and syndromic categories did not reveal that PsA-TT was consistently associated with any other health problem. CONCLUSIONS: No new safety concerns were identified in this study. These results are consistent with prelicensure data and other studies indicating that PsA-TT is safe. The approach presented could serve as a model for future active postlicensure vaccine safety monitoring associated with large-scale immunization campaigns in low-income countries.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Vacinação em Massa , Vacinas Meningocócicas/efeitos adversos , Vigilância de Produtos Comercializados , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Incidência , Lactente , Mali/epidemiologia , Vacinas Meningocócicas/administração & dosagem , Adulto Jovem
9.
PLoS Pathog ; 9(12): e1003761, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348242

RESUMO

Dengue viruses are mosquito-borne flaviviruses that circulate in nature as four distinct serotypes (DENV1-4). These emerging pathogens are responsible for more than 100 million human infections annually. Severe clinical manifestations of disease are predominantly associated with a secondary infection by a heterotypic DENV serotype. The increased risk of severe disease in DENV-sensitized populations significantly complicates vaccine development, as a vaccine must simultaneously confer protection against all four DENV serotypes. Eliciting a protective tetravalent neutralizing antibody response is a major goal of ongoing vaccine development efforts. However, a recent large clinical trial of a candidate live-attenuated DENV vaccine revealed low protective efficacy despite eliciting a neutralizing antibody response, highlighting the need for a better understanding of the humoral immune response against dengue infection. In this study, we sought to identify epitopes recognized by serotype-specific neutralizing antibodies elicited by monovalent DENV1 vaccination. We constructed a panel of over 50 DENV1 structural gene variants containing substitutions at surface-accessible residues of the envelope (E) protein to match the corresponding DENV2 sequence. Amino acids that contribute to recognition by serotype-specific neutralizing antibodies were identified as DENV mutants with reduced sensitivity to neutralization by DENV1 immune sera, but not cross-reactive neutralizing antibodies elicited by DENV2 vaccination. We identified two mutations (E126K and E157K) that contribute significantly to type-specific recognition by polyclonal DENV1 immune sera. Longitudinal and cross-sectional analysis of sera from 24 participants of a phase I clinical study revealed a markedly reduced capacity to neutralize a E126K/E157K DENV1 variant. Sera from 77% of subjects recognized the E126K/E157K DENV1 variant and DENV2 equivalently (<3-fold difference). These data indicate the type-specific component of the DENV1 neutralizing antibody response to vaccination is strikingly focused on just two amino acids of the E protein. This study provides an important step towards deconvoluting the functional complexity of DENV serology following vaccination.


Assuntos
Anticorpos Neutralizantes/biossíntese , Formação de Anticorpos , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/imunologia , Anticorpos Antivirais , Formação de Anticorpos/genética , Especificidade de Anticorpos , Ensaios Clínicos Fase I como Assunto , Vírus da Dengue/genética , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Células HEK293 , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas do Envelope Viral/genética
10.
J Infect Dis ; 207(12): 1898-908, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23526830

RESUMO

The immunopathogenesis of severe dengue is poorly understood, but there is concern that induction of cross-reactive nonneutralizing antibodies by infection or vaccination may increase the likelihood of severe disease during a subsequent infection. We generated a total of 63 new human monoclonal antibodies to compare the B-cell response of subjects who received the National Institutes of Health live attenuated dengue vaccine rDEN1Δ30 to that of subjects following symptomatic primary infection with DENV1. Both infection and vaccination induced serum neutralizing antibodies and DENV1-reactive peripheral blood B cells, but the magnitude of induction was lower in vaccinated individuals. Serotype cross-reactive weakly neutralizing antibodies dominated the response in both vaccinated and naturally infected subjects. Antigen specificities were very similar, with a slightly greater percentage of antibodies targeting E protein domain I/II than domain III. These data shed light on the similarity of human B-cell response to live attenuated DENV vaccine or natural infection.


Assuntos
Anticorpos Monoclonais/imunologia , Linfócitos B/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/prevenção & controle , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Facilitadores , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos B/virologia , California , Linhagem Celular , Reações Cruzadas , Dengue/virologia , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , Vírus da Dengue/genética , Herpesvirus Humano 4/imunologia , Humanos , Hibridomas , Testes de Neutralização , North Carolina , Proteínas Recombinantes , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
11.
Viruses ; 3(10): 1800-14, 2011 10.
Artigo em Inglês | MEDLINE | ID: mdl-22069516

RESUMO

Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.


Assuntos
Antígenos Virais/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Vacinas contra Dengue/genética , Vírus da Dengue/genética , Vetores Genéticos , Humanos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Interferência Viral
12.
PLoS Pathog ; 7(6): e1002111, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21738473

RESUMO

Neutralizing antibodies are a significant component of the host's protective response against flavivirus infection. Neutralization of flaviviruses occurs when individual virions are engaged by antibodies with a stoichiometry that exceeds a required threshold. From this "multiple-hit" perspective, the neutralizing activity of antibodies is governed by the affinity with which it binds its epitope and the number of times this determinant is displayed on the surface of the virion. In this study, we investigated time-dependent changes in the fate of West Nile virus (WNV) decorated with antibody in solution. Experiments with the well-characterized neutralizing monoclonal antibody (MAb) E16 revealed a significant increase in neutralization activity over time that could not be explained by the kinetics of antibody binding, virion aggregation, or the action of complement. Additional kinetic experiments using the fusion-loop specific MAb E53, which has limited neutralizing activity because it recognizes a relatively inaccessible epitope on mature virions, identified a role of virus "breathing" in regulating neutralization activity. Remarkably, MAb E53 neutralized mature WNV in a time- and temperature-dependent manner. This phenomenon was confirmed in studies with a large panel of MAbs specific for epitopes in each domain of the WNV envelope protein, with sera from recipients of a live attenuated WNV vaccine, and in experiments with dengue virus. Given enough time, significant inhibition of infection was observed even for antibodies with very limited, or no neutralizing activity in standard neutralization assays. Together, our data suggests that the structural dynamics of flaviviruses impacts antibody-mediated neutralization via exposure of otherwise inaccessible epitopes, allowing for antibodies to dock on the virion with a stoichiometry sufficient for neutralization.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Proteínas do Envelope Viral/imunologia , Vírus do Nilo Ocidental/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Linhagem Celular , Vírus da Dengue/imunologia , Epitopos/imunologia , Epitopos/metabolismo , Humanos , Reação em Cadeia da Polimerase , Ligação Viral , Vírus do Nilo Ocidental/metabolismo
13.
Curr Top Microbiol Immunol ; 338: 145-58, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19802584

RESUMO

The recombinant dengue virus type 4 (rDEN4) vaccine candidate, rDEN4Delta30, was found to be highly infectious, immunogenic and safe in human volunteers. At the highest dose (10(5) PFU) evaluated in volunteers, 25% of the vaccinees had mild elevations in liver enzymes that were rarely seen at lower doses. Here, we describe the generation and selection of additional mutations that were introduced into rDEN4Delta30 to further attenuate the virus in animal models and ultimately human vaccinees. Based on the elevated liver enzymes associated with the 10(5) PFU dose of rDEN4Delta30 and the known involvement of liver infection in dengue virus pathogenesis, a large panel of mutant viruses was screened for level of replication in the HuH-7 human hepatoma cell line, a surrogate for human liver cells and selected viruses were further analyzed for level of viremia in SCID-HuH-7 mice. It was hypothesized that rDEN4Delta30 derivatives with restricted replication in vitro and in vivo in HuH-7 human liver cells would be restricted in replication in the liver of vaccinees. Two mutations identified by this screen, NS3 4995 and NS5 200,201, were separately introduced into rDEN4Delta30 and found to further attenuate the vaccine candidate for SCID-HuH-7 mice and rhesus monkeys while retaining sufficient immunogenicity in rhesus monkeys to confer protection. In humans, the rDEN4Delta30-200,201 vaccine candidate administered at 10(5) PFU exhibited greatly reduced viremia, high infectivity and lacked liver toxicity while inducing serum neutralizing antibody at a level comparable to that observed in volunteers immunized with rDEN4Delta30. Clinical studies of rDEN4Delta30-4995 are ongoing.


Assuntos
Vacinas contra Dengue/genética , Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Animais , Linhagem Celular Tumoral , Humanos , Macaca mulatta , Camundongos , Camundongos SCID , Mutagênese , Seleção Genética , Vacinação , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
14.
J Immunol ; 182(5): 3318-26, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19234231

RESUMO

Despite the central role of memory B cells (MBC) in protective immune responses, little is understood about how they are acquired in naive individuals in response to Ag exposure, and how this process is influenced by concurrent activation of the innate immune system's TLR. In this longitudinal study of malaria-naive individuals, we examined the MBC response to two candidate malaria vaccines administered with or without CpG, a TLR9 ligand. We show that the acquisition of MBC is a dynamic process in which the vaccine-specific MBC pool rapidly expands and then contracts, and that CpG enhances the kinetics, magnitude, and longevity of this response. We observed that the percentage of vaccine-specific MBC present at the time of reimmunization predicts vaccine-specific Ab levels 14 days later; and that at steady-state, there is a positive correlation between vaccine-specific MBC and Ab levels. An examination of the total circulating MBC and plasma cell pools also suggests that MBC differentiate into plasma cells through polyclonal activation, independent of Ag specificity. These results provide important insights into the human MBC response, which can inform the development of vaccines against malaria and other pathogens that disrupt immunological memory.


Assuntos
Subpopulações de Linfócitos B/imunologia , Memória Imunológica , Malária/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Plasmodium falciparum/imunologia , Receptor Toll-Like 9/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adulto , Hidróxido de Alumínio/administração & dosagem , Hidróxido de Alumínio/imunologia , Animais , Subpopulações de Linfócitos B/metabolismo , Células Cultivadas , Ensaios Clínicos Fase I como Assunto , Ilhas de CpG/imunologia , Epitopos de Linfócito B/imunologia , Humanos , Imunização Secundária , Ligantes , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Oligodesoxirribonucleotídeos/metabolismo , Receptor Toll-Like 9/metabolismo
15.
PLoS Pathog ; 4(5): e1000060, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18464894

RESUMO

West Nile virions incorporate 180 envelope (E) proteins that orchestrate the process of virus entry and are the primary target of neutralizing antibodies. The E proteins of newly synthesized West Nile virus (WNV) are organized into trimeric spikes composed of pre-membrane (prM) and E protein heterodimers. During egress, immature virions undergo a protease-mediated cleavage of prM that results in a reorganization of E protein into the pseudo-icosahedral arrangement characteristic of mature virions. While cleavage of prM is a required step in the virus life cycle, complete maturation is not required for infectivity and infectious virions may be heterogeneous with respect to the extent of prM cleavage. In this study, we demonstrate that virion maturation impacts the sensitivity of WNV to antibody-mediated neutralization. Complete maturation results in a significant reduction in sensitivity to neutralization by antibodies specific for poorly accessible epitopes that comprise a major component of the human antibody response following WNV infection or vaccination. This reduction in neutralization sensitivity reflects a decrease in the accessibility of epitopes on virions to levels that fall below a threshold required for neutralization. Thus, in addition to a role in facilitating viral entry, changes in E protein arrangement associated with maturation modulate neutralization sensitivity and introduce an additional layer of complexity into humoral immunity against WNV.


Assuntos
Anticorpos Antivirais/imunologia , Proteínas do Envelope Viral/imunologia , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Animais , Anticorpos Antivirais/metabolismo , Linhagem Celular , Chlorocebus aethiops , Ensaios Clínicos Fase I como Assunto , Relação Dose-Resposta Imunológica , Humanos , Testes de Neutralização , Ligação Proteica , Biossíntese de Proteínas , Células Vero , Proteínas do Envelope Viral/metabolismo , Vírion/imunologia , Vírion/metabolismo , Vírus do Nilo Ocidental/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA