RESUMO
AIMS: Proteomic profiling offers an expansive approach to biomarker discovery and mechanistic hypothesis generation for LV remodelling, a critical component of heart failure (HF). We sought to identify plasma proteins cross-sectionally associated with left ventricular (LV) size and geometry in a diverse population-based cohort without known cardiovascular disease (CVD). METHODS AND RESULTS: Among participants of the Multi-Ethnic Study of Atherosclerosis (MESA), we quantified plasma abundances of 1305 proteins using an aptamer-based platform at exam 1 (2000-2002) and exam 5 (2010-2011) and assessed LV structure by cardiac magnetic resonance (CMR) at the same time points. We used multivariable linear regression with robust variance to assess cross-sectional associations between plasma protein abundances and LV structural characteristics at exam 1, reproduced findings in later-life at exam 5, and explored relationships of associated proteins using annotated enrichment analysis. We studied 763 participants (mean age 60 ± 10 years at exam 1; 53% female; 19% Black race; 31% Hispanic ethnicity). Following adjustment for renal function and traditional CVD risk factors, plasma levels of 3 proteins were associated with LV mass index at both time points with the same directionality (FDR < 0.05): leptin (LEP), renin (REN), and cathepsin-D (CTSD); 20 with LV end-diastolic volume index: LEP, NT-proBNP, histone-lysine N-methyltransferase (EHMT2), chordin-like protein 1 (CHRDL1), tumour necrosis factor-inducible gene 6 protein (TNFAIP6), NT-3 growth factor receptor (NTRK3), c5a anaphylatoxin (C5), neurogenic locus notch homologue protein 3 (NOTCH3), ephrin-B2 (EFNB2), osteomodulin (OMD), contactin-4 (CNTN4), gelsolin (GSN), stromal cell-derived factor 1 (CXCL12), calcineurin subunit B type 1 (PPP3R1), insulin-like growth factor 1 receptor (IGF1R), bone sialoprotein 2 (IBSP), interleukin-11 (IL-11), follistatin-related protein 1 (FSTL1), periostin (POSTN), and biglycan (BGN); and 4 with LV mass-to-volume ratio: RGM domain family member B (RGMB), transforming growth factor beta receptor type 3 (TGFBR3), ephrin-A2 (EFNA2), and cell adhesion molecule 3 (CADM3). Functional annotation implicated regulation of the PI3K-Akt pathway, bone morphogenic protein signalling, and cGMP-mediated signalling. CONCLUSIONS: We report proteomic profiling of LV size and geometry, which identified novel associations and reinforced previous findings on biomarker candidates for LV remodelling and HF. If validated, these proteins may help refine risk prediction and identify novel therapeutic targets for HF.
RESUMO
BACKGROUNDMost GWAS of plasma proteomics have focused on White individuals of European ancestry, limiting biological insight from other ancestry-enriched protein quantitative loci (pQTL).METHODSWe conducted a discovery GWAS of approximately 3,000 plasma proteins measured by the antibody-based Olink platform in 1,054 Black adults from the Jackson Heart Study (JHS) and validated our findings in the Multi-Ethnic Study of Atherosclerosis (MESA). The genetic architecture of identified pQTLs was further explored through fine mapping and admixture association analysis. Finally, using our pQTL findings, we performed a phenome-wide association study (PheWAS) across 2 large multiethnic electronic health record (EHR) systems in All of Us and BioMe.RESULTSWe identified 1,002 pQTLs for 925 protein assays. Fine mapping and admixture analyses suggested allelic heterogeneity of the plasma proteome across diverse populations. We identified associations for variants enriched in African ancestry, many in diseases that lack precise biomarkers, including cis-pQTLs for cathepsin L (CTSL) and Siglec-9, which were linked with sarcoidosis and non-Hodgkin's lymphoma, respectively. We found concordant associations across clinical diagnoses and laboratory measurements, elucidating disease pathways, including a cis-pQTL associated with circulating CD58, WBC count, and multiple sclerosis.CONCLUSIONSOur findings emphasize the value of leveraging diverse populations to enhance biological insights from proteomics GWAS, and we have made this resource readily available as an interactive web portal.FUNDINGNIH K08 HL161445-01A1; 5T32HL160522-03; HHSN268201600034I; HL133870.
Assuntos
Negro ou Afro-Americano , Registros Eletrônicos de Saúde , Estudo de Associação Genômica Ampla , Proteogenômica , Humanos , Negro ou Afro-Americano/genética , Feminino , Masculino , Proteogenômica/métodos , Pessoa de Meia-Idade , Locos de Características Quantitativas , Idoso , Adulto , Proteínas Sanguíneas/genéticaRESUMO
Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38 465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program (with varying sample size by trait, where the minimum sample size was n = 737 for MMP-1). We identified 22 distinct single-variant associations across 6 traits-E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin-that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.
Assuntos
Biomarcadores , Estudo de Associação Genômica Ampla , Inflamação , Medicina de Precisão , Sequenciamento Completo do Genoma , Humanos , Medicina de Precisão/métodos , Inflamação/genética , Estudo de Associação Genômica Ampla/métodos , Sequenciamento Completo do Genoma/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Predisposição Genética para Doença , Feminino , Interleucina-6/genéticaRESUMO
Rationale: Chronic obstructive pulmonary disease (COPD) and emphysema are associated with endothelial damage and altered pulmonary microvascular perfusion. The molecular mechanisms underlying these changes are poorly understood in patients, in part because of the inaccessibility of the pulmonary vasculature. Peripheral blood mononuclear cells (PBMCs) interact with the pulmonary endothelium. Objectives: To test the association between gene expression in PBMCs and pulmonary microvascular perfusion in COPD. Methods: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited two independent samples of COPD cases and controls with ⩾10 pack-years of smoking history. In both samples, pulmonary microvascular blood flow, pulmonary microvascular blood volume, and mean transit time were assessed on contrast-enhanced magnetic resonance imaging, and PBMC gene expression was assessed by microarray. Additional replication was performed in a third sample with pulmonary microvascular blood volume measures on contrast-enhanced dual-energy computed tomography. Differential expression analyses were adjusted for age, gender, race/ethnicity, educational attainment, height, weight, smoking status, and pack-years of smoking. Results: The 79 participants in the discovery sample had a mean age of 69 ± 6 years, 44% were female, 25% were non-White, 34% were current smokers, and 66% had COPD. There were large PBMC gene expression signatures associated with pulmonary microvascular perfusion traits, with several replicated in the replication sets with magnetic resonance imaging (n = 47) or dual-energy contrast-enhanced computed tomography (n = 157) measures. Many of the identified genes are involved in inflammatory processes, including nuclear factor-κB and chemokine signaling pathways. Conclusions: PBMC gene expression in nuclear factor-κB, inflammatory, and chemokine signaling pathways was associated with pulmonary microvascular perfusion in COPD, potentially offering new targetable candidates for novel therapies.
Assuntos
Leucócitos Mononucleares , Imageamento por Ressonância Magnética , Doença Pulmonar Obstrutiva Crônica , Humanos , Feminino , Masculino , Idoso , Leucócitos Mononucleares/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Pessoa de Meia-Idade , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Aterosclerose/genética , Aterosclerose/etnologia , Estudos de Casos e Controles , Estados Unidos/epidemiologia , Idoso de 80 Anos ou mais , Expressão Gênica , Tomografia Computadorizada por Raios X , Circulação Pulmonar , Fumar , MicrocirculaçãoRESUMO
Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease characterized by airway obstruction and accelerated lung function decline. Our understanding of systemic protein biomarkers associated with COPD remains incomplete. Objectives: To determine what proteins and pathways are associated with impaired pulmonary function in a diverse population. Methods: We studied 6,722 participants across six cohort studies with both aptamer-based proteomic and spirometry data (4,566 predominantly White participants in a discovery analysis and 2,156 African American cohort participants in a validation). In linear regression models, we examined protein associations with baseline forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC). In linear mixed effects models, we investigated the associations of baseline protein levels with rate of FEV1 decline (ml/yr) in 2,777 participants with up to 7 years of follow-up spirometry. Results: We identified 254 proteins associated with FEV1 in our discovery analyses, with 80 proteins validated in the Jackson Heart Study. Novel validated protein associations include kallistatin serine protease inhibitor, growth differentiation factor 2, and tumor necrosis factor-like weak inducer of apoptosis (discovery ß = 0.0561, Q = 4.05 × 10-10; ß = 0.0421, Q = 1.12 × 10-3; and ß = 0.0358, Q = 1.67 × 10-3, respectively). In longitudinal analyses within cohorts with follow-up spirometry, we identified 15 proteins associated with FEV1 decline (Q < 0.05), including elafin leukocyte elastase inhibitor and mucin-associated TFF2 (trefoil factor 2; ß = -4.3 ml/yr, Q = 0.049; ß = -6.1 ml/yr, Q = 0.032, respectively). Pathways and processes highlighted by our study include aberrant extracellular matrix remodeling, enhanced innate immune response, dysregulation of angiogenesis, and coagulation. Conclusions: In this study, we identify and validate novel biomarkers and pathways associated with lung function traits in a racially diverse population. In addition, we identify novel protein markers associated with FEV1 decline. Several protein findings are supported by previously reported genetic signals, highlighting the plausibility of certain biologic pathways. These novel proteins might represent markers for risk stratification, as well as novel molecular targets for treatment of COPD.
Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Volume Expiratório Forçado/fisiologia , Proteômica , Capacidade Vital/fisiologia , Espirometria , BiomarcadoresRESUMO
BACKGROUND: Chronic obstructive pulmonary disease (COPD) varies significantly in symptomatic and physiologic presentation. Identifying disease subtypes from molecular data, collected from easily accessible blood samples, can help stratify patients and guide disease management and treatment. METHODS: Blood gene expression measured by RNA-sequencing in the COPDGene Study was analyzed using a network perturbation analysis method. Each COPD sample was compared against a learned reference gene network to determine the part that is deregulated. Gene deregulation values were used to cluster the disease samples. RESULTS: The discovery set included 617 former smokers from COPDGene. Four distinct gene network subtypes are identified with significant differences in symptoms, exercise capacity and mortality. These clusters do not necessarily correspond with the levels of lung function impairment and are independently validated in two external cohorts: 769 former smokers from COPDGene and 431 former smokers in the Multi-Ethnic Study of Atherosclerosis (MESA). Additionally, we identify several genes that are significantly deregulated across these subtypes, including DSP and GSTM1, which have been previously associated with COPD through genome-wide association study (GWAS). CONCLUSIONS: The identified subtypes differ in mortality and in their clinical and functional characteristics, underlining the need for multi-dimensional assessment potentially supplemented by selected markers of gene expression. The subtypes were consistent across cohorts and could be used for new patient stratification and disease prognosis.
Assuntos
Redes Reguladoras de Genes , Doença Pulmonar Obstrutiva Crônica , Humanos , Redes Reguladoras de Genes/genética , Fumantes , Estudo de Associação Genômica Ampla/métodos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , PrognósticoRESUMO
Integrating genetic information with metabolomics has provided new insights into genes affecting human metabolism. However, gene-metabolite integration has been primarily studied in individuals of European Ancestry, limiting the opportunity to leverage genomic diversity for discovery. In addition, these analyses have principally involved known metabolites, with the majority of the profiled peaks left unannotated. Here, we perform a whole genome association study of 2,291 metabolite peaks (known and unknown features) in 2,466 Black individuals from the Jackson Heart Study. We identify 519 locus-metabolite associations for 427 metabolite peaks and validate our findings in two multi-ethnic cohorts. A significant proportion of these associations are in ancestry specific alleles including findings in APOE, TTR and CD36. We leverage tandem mass spectrometry to annotate unknown metabolites, providing new insight into hereditary diseases including transthyretin amyloidosis and sickle cell disease. Our integrative omics approach leverages genomic diversity to provide novel insights into diverse cardiometabolic diseases.
Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , População Negra , Doenças Cardiovasculares/etnologia , Doenças Cardiovasculares/genética , Humanos , Metaboloma/genética , Metabolômica , Espectrometria de Massas em TandemRESUMO
BACKGROUND: Plasma proteins are critical mediators of cardiovascular processes and are the targets of many drugs. Previous efforts to characterize the genetic architecture of the plasma proteome have been limited by a focus on individuals of European descent and leveraged genotyping arrays and imputation. Here we describe whole genome sequence analysis of the plasma proteome in individuals with greater African ancestry, increasing our power to identify novel genetic determinants. METHODS: Proteomic profiling of 1301 proteins was performed in 1852 Black adults from the Jackson Heart Study using aptamer-based proteomics (SomaScan). Whole genome sequencing association analysis was ascertained for all variants with minor allele count ≥5. Results were validated using an alternative, antibody-based, proteomic platform (Olink) as well as replicated in the Multi-Ethnic Study of Atherosclerosis and the HERITAGE Family Study (Health, Risk Factors, Exercise Training and Genetics). RESULTS: We identify 569 genetic associations between 479 proteins and 438 unique genetic regions at a Bonferroni-adjusted significance level of 3.8×10-11. These associations include 114 novel locus-protein relationships and an additional 217 novel sentinel variant-protein relationships. Novel cardiovascular findings include new protein associations at the APOE gene locus including ZAP70 (sentinel single nucleotide polymorphism [SNP] rs7412-T, ß=0.61±0.05, P=3.27×10-30) and MMP-3 (ß=-0.60±0.05, P=1.67×10-32), as well as a completely novel pleiotropic locus at the HPX gene, associated with 9 proteins. Further, the associations suggest new mechanisms of genetically mediated cardiovascular disease linked to African ancestry; we identify a novel association between variants linked to APOL1-associated chronic kidney and heart disease and the protein CKAP2 (rs73885319-G, ß=0.34±0.04, P=1.34×10-17) as well as an association between ATTR amyloidosis and RBP4 levels in community-dwelling individuals without heart failure. CONCLUSIONS: Taken together, these results provide evidence for the functional importance of variants in non-European populations, and suggest new biological mechanisms for ancestry-specific determinants of lipids, coagulation, and myocardial function.
Assuntos
Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Estudo de Associação Genômica Ampla/métodos , Proteoma/metabolismo , Adulto , População Negra , Feminino , Humanos , MasculinoRESUMO
Clonal hematopoiesis of indeterminate potential (CHIP) is a common precursor state for blood cancers that most frequently occurs due to mutations in the DNA-methylation modifying enzymes DNMT3A or TET2. We used DNA-methylation array and whole-genome sequencing data from four cohorts together comprising 5522 persons to study the association between CHIP, epigenetic clocks, and health outcomes. CHIP was strongly associated with epigenetic age acceleration, defined as the residual after regressing epigenetic clock age on chronological age, in several clocks, ranging from 1.31 years (GrimAge, p < 8.6 × 10-7 ) to 3.08 years (EEAA, p < 3.7 × 10-18 ). Mutations in most CHIP genes except DNA-damage response genes were associated with increases in several measures of age acceleration. CHIP carriers with mutations in multiple genes had the largest increases in age acceleration and decrease in estimated telomere length. Finally, we found that ~40% of CHIP carriers had acceleration >0 in both Hannum and GrimAge (referred to as AgeAccelHG+). This group was at high risk of all-cause mortality (hazard ratio 2.90, p < 4.1 × 10-8 ) and coronary heart disease (CHD) (hazard ratio 3.24, p < 9.3 × 10-6 ) compared to those who were CHIP-/AgeAccelHG-. In contrast, the other ~60% of CHIP carriers who were AgeAccelHG- were not at increased risk of these outcomes. In summary, CHIP is strongly linked to age acceleration in multiple clocks, and the combination of CHIP and epigenetic aging may be used to identify a population at high risk for adverse outcomes and who may be a target for clinical interventions.
Assuntos
Hematopoiese Clonal/genética , Epigenômica/métodos , Envelhecimento , Humanos , Fatores de Risco , Resultado do TratamentoRESUMO
BACKGROUND: DNA methylation (DNAm) is associated with gene regulation and estimated glomerular filtration rate (eGFR), a measure of kidney function. Decreased eGFR is more common among US Hispanics and African Americans. The causes for this are poorly understood. We aimed to identify trans-ethnic and ethnic-specific differentially methylated positions (DMPs) associated with eGFR using an agnostic, genome-wide approach. METHODS: The study included up to 5428 participants from multi-ethnic studies for discovery and 8109 participants for replication. We tested the associations between whole blood DNAm and eGFR using beta values from Illumina 450K or EPIC arrays. Ethnicity-stratified analyses were performed using linear mixed models adjusting for age, sex, smoking, and study-specific and technical variables. Summary results were meta-analyzed within and across ethnicities. Findings were assessed using integrative epigenomics methods and pathway analyses. RESULTS: We identified 93 DMPs associated with eGFR at an FDR of 0.05 and replicated 13 and 1 DMPs across independent samples in trans-ethnic and African American meta-analyses, respectively. The study also validated 6 previously published DMPs. Identified DMPs showed significant overlap enrichment with DNase I hypersensitive sites in kidney tissue, sites associated with the expression of proximal genes, and transcription factor motifs and pathways associated with kidney tissue and kidney development. CONCLUSIONS: We uncovered trans-ethnic and ethnic-specific DMPs associated with eGFR, including DMPs enriched in regulatory elements in kidney tissue and pathways related to kidney development. These findings shed light on epigenetic mechanisms associated with kidney function, bridging the gap between population-specific eGFR-associated DNAm and tissue-specific regulatory context.
Assuntos
Epigênese Genética , Epigenômica , Estudo de Associação Genômica Ampla , Rim/metabolismo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Grupos Raciais/genética , Ilhas de CpG , Metilação de DNA , Epigenômica/métodos , Regulação da Expressão Gênica , Variação Genética , Genética Populacional , Taxa de Filtração Glomerular , Humanos , Testes de Função Renal , FenótipoRESUMO
Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10-11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10-10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10-122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
Assuntos
Estudo de Associação Genômica Ampla , Cadeias HLA-DRB1/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucina-1/genética , Interleucina-6/genética , Receptores de Interleucina-6/genética , Estudos de Coortes , Regulação da Expressão Gênica , Loci Gênicos , Predisposição Genética para Doença , Humanos , Interleucina-6/sangue , Polimorfismo de Nucleotídeo Único , População Branca/genéticaRESUMO
Chronic stress has been widely proposed to increase systemic inflammation, a pathway that may link stress with a heightened risk for many diseases. The chronic stress-inflammation relationship has been challenging to study in humans, however, and family caregiving has been identified as one type of stressful situation that might lead to increased inflammation. Previous studies of caregiving and inflammation have generally used small convenience samples, compared caregivers with poorly characterized control participants, and assessed inflammation only after caregivers provided care for extended periods of time. In the current project, changes over a 9-y period were examined on six circulating biomarkers of inflammation for 480 participants from a large population-based study. All participants reported no involvement in caregiving prior to the first biomarker assessment, and 239 participants then took on extensive and prolonged family caregiving responsibilities at some point prior to the second biomarker assessment. Incident caregivers were individually matched on multiple demographic and health history variables with participants who reported no caregiving responsibilities. Of the six biomarkers examined, only tumor necrosis factor alpha receptor 1 showed a significantly greater increase in caregivers compared with controls. This effect was small (d = 0.14), and no effects were found for a subset of 45 caregivers who were living with a spouse with dementia. These results are consistent with recent meta-analytic findings and challenge the widespread belief that caregiving is a substantial risk factor for increased inflammation. Future research is warranted on factors that may account for stress resilience in family caregivers.
Assuntos
Cuidadores/psicologia , Inflamação/epidemiologia , Estresse Psicológico/epidemiologia , Idoso , Biomarcadores/sangue , Feminino , Humanos , Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estresse Psicológico/sangue , Estados Unidos/epidemiologiaRESUMO
Novel proteomics platforms, such as the aptamer-based SOMAscan platform, can quantify large numbers of proteins efficiently and cost-effectively and are rapidly growing in popularity. However, comparisons to conventional immunoassays remain underexplored, leaving investigators unsure when cross-assay comparisons are appropriate. The correlation of results from immunoassays with relative protein quantification is explored by SOMAscan. For 63 proteins assessed in two chronic obstructive pulmonary disease (COPD) cohorts, subpopulations and intermediate outcome measures in COPD Study (SPIROMICS), and COPDGene, using myriad rules based medicine multiplex immunoassays and SOMAscan, Spearman correlation coefficients range from -0.13 to 0.97, with a median correlation coefficient of ≈0.5 and consistent results across cohorts. A similar range is observed for immunoassays in the population-based Multi-Ethnic Study of Atherosclerosis and for other assays in COPDGene and SPIROMICS. Comparisons of relative quantification from the antibody-based Olink platform and SOMAscan in a small cohort of myocardial infarction patients also show a wide correlation range. Finally, cis pQTL data, mass spectrometry aptamer confirmation, and other publicly available data are integrated to assess relationships with observed correlations. Correlation between proteomics assays shows a wide range and should be carefully considered when comparing and meta-analyzing proteomics data across assays and studies.
Assuntos
Infarto do Miocárdio/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumantes/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Imunoensaio/métodos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Doença Pulmonar Obstrutiva Crônica/sangueRESUMO
AIMS: Soluble tumour necrosis factor-α receptor 1 (sTNF-αR1) and interleukin-2 receptor α (sIL-2Rα) predict incident heart failure (HF) in the elderly population. However, the association of these biomarkers with HF in a multi-ethnic asymptomatic population is unclear. We aimed to investigate the association of sTNF-αR1 and sIL-2Rα with incident HF in a multi-ethnic population of middle age and older participants. METHODS AND RESULTS: The multi-ethnic study of atherosclerosis is a prospective population-based study of 6814 participants aged 45-84 years who were free of clinical cardiovascular disease at enrolment. We included 2869 participants with available sTNF-αR1 or sIL-2Rα level measurement at baseline multi-ethnic study of atherosclerosis exam (2000-2002). We used Cox proportional-hazards model to investigate the association between sTNF-αR1 and sIL-2Rα with incident HF after adjusting for traditional cardiovascular risk factors and coronary artery calcium score measured by cardiac computed tomography. Among the included participants, the mean (standard deviation) age was 61.6 (10.2) years and 46.7% were men. The median (interquartile range) sTNF-αR1 and sIL-2Rα were 1293 (1107-1547) and 901 (727-1154) pg/mL. During a median follow-up of 14.2 (interquartile range: 11.7-14.8) years, 130 participants developed HF. In multivariable analysis, the hazard ratio (95% confidence interval, P value) of incident HF for each standard deviation increment of log-transformed sTNF-αR1 and sIL-2Rα was 1.43 (1.21-1.7, P ≤ 0.001) and 1.26 (1.04-1.53, P = 0.02), respectively. Excluding participants with interim coronary heart disease, we found a statistically significant association between sTNF-αR1 and HF with hazard ratio of 1.39 (95% confidence interval: 1.11 to 1.74, P = 0.005) and sIL-2Rα and HF showing a hazard ratio of 1.39 (95% confidence interval: 1.09 to 1.76, P = 0.007). CONCLUSIONS: sTNF-αR1 and sIL-2Rα are associated with a higher risk of incident HF in a multi-ethnic cohort without a previous history of cardiovascular disease.
Assuntos
Insuficiência Cardíaca , Subunidade alfa de Receptor de Interleucina-2/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Idoso , Aterosclerose/epidemiologia , Feminino , Insuficiência Cardíaca/epidemiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
OBJECTIVE: Interleukin (IL) -2 receptor subunit α regulates lymphocyte activation, which plays an important role in atherosclerosis. Associations between soluble IL-2Rα (sIL-2Rα) and cardiovascular disease (CVD) have not been widely studied and little is known about the genetic determinants of sIL-2Rα levels. APPROACH AND RESULTS: We measured baseline levels of sIL-2Rα in 4408 European American (EA) and 766 African American (AA) adults from the Cardiovascular Health Study (CHS) and examined associations with baseline CVD risk factors, subclinical CVD, and incident CVD events. We also performed a genome-wide association study for sIL-2Rα in CHS (2964 EAs and 683 AAs) and further combined CHS EA results with those from two other EA cohorts in a meta-analysis (n=4464 EAs). In age, sex- and race- adjusted models, sIL-2Rα was positively associated with current smoking, type 2 diabetes mellitus, hypertension, insulin, waist circumference, C-reactive protein, IL-6, fibrinogen, internal carotid wall thickness, all-cause mortality, CVD mortality, and incident CVD, stroke, and heart failure. When adjusted for baseline CVD risk factors and subclinical CVD, associations with all-cause mortality, CVD mortality, and heart failure remained significant in both EAs and AAs. In the EA genome-wide association study analysis, we observed 52 single-nucleotide polymorphisms in the chromosome 10p15-14 region, which contains IL2RA, IL15RA, and RMB17, that reached genome-wide significance (P<5×10(-8)). The most significant single-nucleotide polymorphism was rs7911500 (P=1.31×10(-75)). The EA meta-analysis results were highly consistent with CHS-only results. No single-nucleotide polymorphisms reached statistical significance in the AAs. CONCLUSIONS: These results support a role for sIL-2Rα in atherosclerosis and provide evidence for multiple-associated single-nucleotide polymorphisms at chromosome 10p15-14.
Assuntos
Negro ou Afro-Americano/genética , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/mortalidade , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Subunidade alfa de Receptor de Interleucina-2/genética , Adulto , Distribuição por Idade , Idoso , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/etnologia , Doenças Cardiovasculares/genética , Estudos de Coortes , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/etnologia , Feminino , Humanos , Incidência , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Modelos de Riscos Proporcionais , Estudos Prospectivos , Medição de Risco , Distribuição por Sexo , Análise de SobrevidaRESUMO
Interleukin-6 (IL-6) and C-reactive protein (CRP) levels increase with age and likely play a role in adverse health outcomes in older adults. The relationship between IL-6 gene tag single nucleotide polymorphisms (SNPs) and circulating IL-6 and CRP levels, cardiovascular disease (CVD) outcomes, and mortality in Caucasian (CA) and African American (AA) participants of the Cardiovascular Health Study (CHS) was evaluated using ANCOVA and Cox proportional hazards models. The minor allele of the promoter SNP 1510 and intronic SNP 3572 associates with significantly higher serum IL-6 and CRP levels in CA but not AA. The CRP association persisted after CA and AA populations were combined and after accounting for multiple comparisons. These associations did not carry through to cardiovascular disease outcomes. Decreased risk of stroke was identified in CA, with the minor allele of SNP 1111 (HRR 0.71, 95% CI 0.52, 0.95), P = 0.02, and increased risk of CVD and all-cause mortality (HRR 1.31, 95% CI 1.05-1.64) in AAs heterozygote for SNP 2989. While genetic variation in the IL-6 gene was associated with circulating IL-6 and especially with CRP concentrations in this study, there is little evidence for association between common IL-6 gene variation and adverse health outcomes in this population of older adults.
Assuntos
Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/genética , Variação Genética , Interleucina-6/sangue , Interleucina-6/genética , Negro ou Afro-Americano/genética , Idoso , Alelos , Estudos de Coortes , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Íntrons , Estudos Longitudinais , Masculino , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , População Branca/genéticaRESUMO
Cancer patients have an increased risk of venous thrombosis (VT). The association of factor V Leiden (FVL) and the prothrombin 20210A variant with VT in cancer patients is not established. We genotyped 101 cancer patients with VT and 101 cancer patients without VT for these polymorphisms. Five cases and three controls were heterozygous for FVL, yielding an odds ratio of 1.7 (95% confidence interval (CI) 0.3-10.7). Five cases and no controls were heterozygous for prothrombin 20210A, for an odds ratio of 6.7 (95% CI 0.9-infinity). Prothrombin 20210A may be associated with VT risk among cancer patients.