Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Cancer Ther ; 23(6): 823-835, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38442920

RESUMO

Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive malignancy with poor outcomes. To investigate novel therapeutic strategies, we characterized three new metastatic prostate cancer patient derived-tumor xenograft (PDTX) models and developed 3D spheroids from each to investigate molecular targeted therapy combinations including CDK4/6 inhibitors (CDK4/6i) with AKT inhibitors (ATKi). Metastatic prostate cancer tissue was collected and three PDTX models were established and characterized using whole-exome sequencing. PDTX 3D spheroids were developed from these three PDTXs to show resistance patterns and test novel molecular-targeted therapies. CDK4/6i's were combined with AKTi's to assess synergistic antitumor response to prove our hypothesis that blockade of AKT overcomes drug resistance to CDK4/6i. This combination was evaluated in PDTX three-dimensional (3D) spheroids and in vivo experiments with responses measured by tumor volumes, PSA, and Ga-68 PSMA-11 PET-CT imaging. We demonstrated CDK4/6i's with AKTi's possess synergistic antitumor activity in three mCRPC PDTX models. These models have multiple unique pathogenic and deleterious genomic alterations with resistance to single-agent CDK4/6i's. Despite this, combination therapy with AKTi's was able to overcome resistance mechanisms. The IHC and Western blot analysis confirmed on target effects, whereas tumor volume, serum PSA ELISA, and radionuclide imaging demonstrated response to therapy with statistically significant SUV differences seen with Ga-68 PSMA-11 PET-CT. These preclinical data demonstrating antitumor synergy by overcoming single-agent CDK 4/6i as well as AKTi drug resistance provide the rational for a clinical trial combining a CDK4/6i with an AKTi in patients with mCRPC whose tumor expresses wild-type retinoblastoma 1.


Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Neoplasias de Próstata Resistentes à Castração , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Masculino , Animais , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Metástase Neoplásica , Linhagem Celular Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
2.
Oncotarget ; 9(13): 10905-10919, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29541385

RESUMO

Patient-derived tumor xenograft (PDTX) mouse models were used to discover new therapies for naïve and drug resistant BRAFV600E -mutant melanoma. Tumor histology, oncogenic protein expression, and antitumor activity were comparable between patient and PDTX-matched models thereby validating PDTXs as predictive preclinical models of therapeutic response in patients. PDTX models responsive and non-responsive to BRAF/MEK standard of care (SOC) therapy were used to identify efficacious combination therapies. One such combination includes a CDK4/6 inhibitor that blocks cell cycle progression. The rationale for this is that the retinoblastoma protein (pRb) is 95% wildtype in BRAF mutant melanoma. We discovered that 77/77 stage IV metastatic melanoma tissues were positive for inactive phosphorylated pRb (pRb-Ser780). Rb is hyperphosphorylated and inactivated by CDK4/6:cyclin D1 and when restored to its hypophosphorylated active form blocks cell cycle progression. The addition of a CDK4/6 inhibitor to SOC therapy was superior to SOC. Importantly, triple therapy in an upfront treatment and salvage therapy setting provided sustained durable response. We also showed that CDK4/6 blockade resensitized drug resistant melanoma to SOC therapy. Durable response was associated with sustained suppression of pRb-Ser780. Thus, reactivation of pRb may prove to be a clinical biomarker of response and the mechanism responsible for durable response. In light of recent clinical trial data using this triple therapy against BRAFV600E -mutant melanoma, our findings demonstrating superior and prolonged durable response in PDTX models portend use of this therapeutic strategy against naïve and SOC resistant BRAFV600E -mutant metastatic melanoma coupled with pRB-Ser780 as a biomarker of response.

3.
J Transl Med ; 14(1): 129, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27165126

RESUMO

BACKGROUND: Pancreatic acinar cell carcinoma (PACC) is a rare malignancy, accounting for <1 % of all pancreatic neoplasms. Very few retrospective studies are available to help guide management. We previously reported the case of a patient with metastatic PACC who achieved prolonged survival following doxorubicin treatment. Personalized treatment was based on molecular and in vitro data collected from primary cells developed from their liver metastasis. We now report the characterization of a patient derived tumor xenograft (PDTX) mouse model that originated from this patient's PACC liver metastasis. METHODS: Fragments of biopsy tissue (5 mm(3)) from PACC liver metastasis were implanted into athymic nude mice. Tumors were grown and passaged from the host mice into new mice to be tested for therapeutic response. Immuno-histochemical (IHC) biomarkers were used to confirm that the PDTX model represents human PACC. The antitumor activities of multiple drugs (5-FU, irinotecan, oxaliplatin, gemcitabine, bevacizumab, erlotinib, doxorubicin and imatinib) were tested. Tumor size was measured over 74 days or until they reached an endpoint volume of ~800 mm(3). Tests to measure serum lipase levels and histological analyses of tumor tissues were also conducted to assess PACC progression and re-differentiation. RESULTS: The model presented here expresses the same IHC markers found in human PACC. In the chemotherapy study, oxaliplatin produced a prolonged durable growth response associated with increased apoptosis, decreased serum lipase levels and increased healthy acinar cells. Bevacizumab also produced a significant growth response, but the effect was not prolonged as demonstrated by oxaliplatin treatment. The other chemotherapies had moderate to little effect, particularly after treatment ceased. Mutations in DNA repair genes are common in PACC and increase tumor susceptibility to oxaliplatin. To explore this we performed IHC and found no nuclear expression of BRCA2 in our model, indicating a mutation affecting nuclear localization. Gene sequencing confirms BRCA2 has a homozygous gene deletion on Exon 10, which frequently causes a protein truncation. CONCLUSIONS: In summary, we report the development and characterization of the first and only preclinical PACC PDTX model. Here we show sustained anti-tumor activity of single agent oxaliplatin, a compound that is more effective in tumors that harbor mutations in DNA repair genes. Our data shows that BRCA2 is mutated in our PACC model, which could contribute to the oxaliplatin sensitivity observed. Further studies on this rare PACC model can serve to elucidate other novel therapies, biomarkers, and molecular mechanisms of signaling and drug resistance.


Assuntos
Carcinoma de Células Acinares/tratamento farmacológico , Compostos Organoplatínicos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Apoptose/efeitos dos fármacos , Proteína BRCA2/genética , Carcinoma de Células Acinares/sangue , Carcinoma de Células Acinares/irrigação sanguínea , Carcinoma de Células Acinares/patologia , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Determinação de Ponto Final , Feminino , Imunofluorescência , Humanos , Lipase/sangue , Camundongos Nus , Mutação/genética , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Compostos Organoplatínicos/efeitos adversos , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
4.
Cancer Res ; 62(20): 5778-84, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12384538

RESUMO

Combining anticancer drugs with different mechanisms of action has the potential to enhance antitumor effect. CPT-11 (Camptosar, irinotecan), a topoisomerase I inhibitor, has been shown to be highly effective in the treatment of a variety of cancers. However, its clinical usage is often complicated by late diarrhea. A number of studies have shown that cyclooxygenase (COX)-2 is overexpressed in many forms of human tumors, suggesting that COX-2 inhibition may be useful in the treatment of cancer. In this study, we used two mouse tumor models (HT-29 and colon-26 cells) to evaluate the effect of combining CPT-11 with celecoxib on tumor growth. We also assessed the involvement of COX-2 in the pathogenesis of CPT-11-induced late diarrhea using a rat model. Results indicate that celecoxib enhances the antitumor effect of CPT-11 and reduces the severity of late diarrhea in a dose-dependent manner. The extended benefits of combining celecoxib with CPT-11 may significantly improve the outcome of cancer patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Diarreia/prevenção & controle , Isoenzimas/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , Celecoxib , Colo/metabolismo , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2 , Diarreia/induzido quimicamente , Dinoprostona/biossíntese , Dinoprostona/fisiologia , Esquema de Medicação , Sinergismo Farmacológico , Células HT29/efeitos dos fármacos , Humanos , Irinotecano , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prostaglandina-Endoperóxido Sintases , Pirazóis , Ratos , Ratos Sprague-Dawley , Sulfonamidas/administração & dosagem , Redução de Peso/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA