Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(3): 4431-4445, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34405332

RESUMO

Carbon materials of different structural and textural properties (multi-walled carbon nanotubes, carbon cryogel, and carbonized hydrothermal carbon) were used as adsorbents for the removal of estrone, 17ß-estradiol, and 17α-ethinylestradiol from aqueous solutions. Chemical modification and/or activation were applied to alter surface characteristics and to increase the adsorption and desorption efficiency of carbon materials. Surfaces of treated and untreated carbon materials were characterized through the examination of the textural properties, the nature of surface functional groups, and surface acidity. It was found that the adsorption capacity of tested carbon materials is not directly proportional to the specific surface area and the content of surface oxygen groups. However, a high ratio of surface mesoporosity affected the adsorption process most prominently, by increasing adsorption capacity and the rate of the adsorption process. Adsorption of estrone, 17ß-estradiol, and 17α-ethinylestradiol followed pseudo-second-order kinetic model, while the equilibrium adsorption data were best fitted with the Langmuir isotherm model. Calculated mean adsorption energy values, along with the thermodynamic parameters, indicated that removal of selected hormones was dominated by the physisorption mechanism. High values of adsorption efficiency (88-100 %) and Langmuir adsorption capacities (29.45-194.7 mg/g) imply that examined materials, especially mesoporous carbon cryogel and multi-walled carbon nanotubes, can be used as powerful adsorbents for relatively fast removal of estrogen hormones from water.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Adsorção , Criogéis , Estradiol , Estrona , Etinilestradiol , Concentração de Íons de Hidrogênio , Cinética , Água , Poluentes Químicos da Água/análise
2.
Environ Sci Pollut Res Int ; 24(25): 20784-20793, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28718026

RESUMO

In this paper, pristine and chemically treated multi-walled carbon nanotubes (MWCNTs) were employed as solid-phase extraction sorbents for the isolation and enrichment of multi-class pharmaceuticals from the surface water and groundwater, prior to liquid chromatography-tandem mass spectrometry analysis. Thirteen pharmaceuticals that belong to different therapeutical classes (erythromycin, azithromycin, sulfamethoxazole, diazepam, lorazepam, carbamazepine, metoprolol, bisoprolol, enalapril, cilazapril, simvastatin, clopidogrel, diclofenac) and two metabolites of metamizole (4-acetylaminoantipyrine and 4-formylaminoantipyrine) were selected for this study. The influence of chemical treatment on MWCNT surface characteristics and extraction efficiency was studied, and it was shown that HCl treatment of MWCNT leads to a decrease in the amount of surface oxygen groups and at the same time favorably affects the efficiency toward extraction of selected pharmaceuticals. After the optimization of the SPE procedure, the following conditions were chosen: 50 mg of HCl-treated MCWNT as a sorbent, 100 mL of water sample at pH 6, and 15 mL of the methanol-dichloromethane mixture (1:1, v/v) as eluent. Under optimal conditions, high recoveries (79-119%), as well as low detection (0.2 to 103 ng L-1) and quantitation (0.5-345 ng L-1) limits, were obtained. The optimized method was applied to the analysis of five surface water and two groundwater samples, and three pharmaceuticals were detected, the antiepileptic drug carbamazepine and two metabolites of antipyretic metamizole.


Assuntos
Monitoramento Ambiental/métodos , Nanotubos de Carbono/química , Preparações Farmacêuticas/análise , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Adsorção , Cromatografia Líquida , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA