Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 683: 191-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37087188

RESUMO

Diacylglycerols (DAGs) are anabolic precursors to membrane lipid and storage triacylglycerol biosynthesis, metabolic intermediates of lipid catabolism, and potent cellular signaling molecules. The different DAG molecular species that accumulate over development or in different tissues reflect the changing aspects of cellular lipid metabolism. Consequently, an accurate determination of DAG molecular species in biological samples is essential to understand various metabolic processes and their diagnostic relevance. However, quantification of DAG molecular species in various biological samples represents a challenging task because of their low abundance, hydrophobicity, and instability. This chapter describes the most common chromatographic (TLC and HPLC) and mass spectrometry (MS) methods used to analyze DAG molecular species. In addition, we directly compared the three methods using DAG obtained by phospholipase C hydrolysis of phosphatidylcholine purified from a Nicotiana benthamiana leaf extract. We conclude that each method identified similar major molecular species, however, the exact levels of those varied mainly due to sensitivity of the technique, differences in sample preparation, and processing. This chapter provides three different methods to analyze DAG molecular species, and the discussion of the benefits and challenges of each technique will aid in choosing the right method for your analysis.


Assuntos
Diglicerídeos , Espectrometria de Massas por Ionização por Electrospray , Diglicerídeos/análise , Diglicerídeos/química , Diglicerídeos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Fosfatidilcolinas
2.
Metab Eng ; 72: 391-402, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598886

RESUMO

Biologically produced wax esters can fulfil different industrial purposes. These functionalities almost drove the sperm whale to extinction from hunting. After the ban on hunting, there is a niche in the global market for biolubricants with properties similar to spermaceti. Wax esters can also serve as a mechanism for producing insect sex pheromone fatty alcohols. Pheromone-based mating disruption strategies are in high demand to replace the toxic pesticides in agriculture and manage insect plagues threatening our food and fiber reserves. In this study we set out to investigate the possibilities of in planta assembly of wax esters, for specific applications, through transient expression of various mix-and-match combinations of genes in Nicotiana benthamiana leaves. Our synthetic biology designs were outlined in order to pivot plant lipid metabolism into producing wax esters with targeted fatty acyl and fatty alcohols moieties. Through this approach we managed to obtain industrially important spermaceti-like wax esters enriched in medium-chain fatty acyl and/or fatty alcohol moieties of wax esters. Via employment of plant codon-optimized moth acyl-CoA desaturases we also managed to capture unusual, unsaturated fatty alcohol and fatty acyl moieties, structurally similar to moth pheromone compounds, in plant-accumulated wax esters. Comparison between outcomes of different experimental designs identified targets for stable transformation to accumulate specialized wax esters and helped us to recognize possible bottlenecks of such accumulation.


Assuntos
Ésteres , Álcoois Graxos , Ésteres/metabolismo , Álcoois Graxos/metabolismo , Feromônios/metabolismo , Folhas de Planta/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Ceras/metabolismo
3.
Front Plant Sci ; 13: 863254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401590

RESUMO

In developing soybean seeds, carbon is partitioned between oil, protein and carbohydrates. Here, we demonstrate that suppression of lipase-mediated turnover of triacylglycerols (TAG) during late seed development increases fatty acid content and decreases the presence of undigestible oligosaccharides. During late stages of embryo development, the fatty acid content of soybean seed decreases while the levels of the oligosaccharides raffinose and stachyose increase. Three soybean genes orthologous to the Arabidopsis lipase gene SUGAR-DEPENDENT1 (SDP1) are upregulated at this time. Suppression of these genes resulted in higher oil levels, with lipid levels in the best lines exceeding 24% of seed weight. In addition, lipase-suppressed lines produced larger seeds compared to wild-type plants, resulting in increases of over 20% in total lipid per seed. Levels of raffinose and stachyose were lower in the transgenic lines, with average reductions of 15% in total raffinose family oligosaccharides observed. Despite the increase in oil, protein content was not negatively impacted and trended higher in the transgenic lines. These results are consistent with a role for SDP1 in turning over TAG to supply carbon for other needs, including the synthesis of oligosaccharides, and offer new strategies to further improve the composition of soybean seeds.

4.
Plant J ; 106(4): 953-964, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33619818

RESUMO

Acetyl-triacylglycerols (acetyl-TAG) contain an acetate group in the sn-3 position instead of the long-chain fatty acid present in regular triacylglycerol (TAG). The acetate group confers unique physical properties such as reduced viscosity and a lower freezing point to acetyl-TAG, providing advantages for use as emulsifiers, lubricants, and 'drop-in' biofuels. Previously, the synthesis of acetyl-TAG in the seeds of the oilseed crop camelina (Camelina sativa) was achieved through the heterologous expression of the diacylglycerol acetyltransferase gene EaDAcT, isolated from Euonymus alatus seeds that naturally accumulate high levels of acetyl-TAG. Subsequent work identified a similar acetyltransferase, EfDAcT, in the seeds of Euonymus fortunei, that possesses higher in vitro activity compared to EaDAcT. In this study, the seed-specific expression of EfDAcT in camelina led to a 20 mol% increase in acetyl-TAG levels over that of EaDAcT. Coupling EfDAcT expression with suppression of the endogenous competing enzyme DGAT1 further enhanced acetyl-TAG accumulation, up to 90 mol% in the best transgenic lines. Accumulation of high levels of acetyl-TAG was stable over multiple generations, with minimal effect on seed size, weight, and fatty acid content. Slight delays in germination were noted in transgenic seeds compared to the wild type. EfDAcT transcript and protein levels were correlated during seed development with a limited window of EfDAcT protein accumulation. In high acetyl-TAG producing lines, EfDAcT protein expression in developing seeds did not reflect the eventual acetyl-TAG levels in mature seeds, suggesting that other factors limit acetyl-TAG accumulation.


Assuntos
Acetiltransferases/metabolismo , Camellia/enzimologia , Euonymus/enzimologia , Óleos de Plantas/química , Triglicerídeos/metabolismo , Acetiltransferases/genética , Biocombustíveis , Camellia/química , Camellia/genética , Diglicerídeos/metabolismo , Euonymus/genética , Ácidos Graxos/metabolismo , Germinação , Metabolismo dos Lipídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/enzimologia , Sementes/genética
5.
Metabolites ; 10(1)2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905618

RESUMO

Protein and oil levels measured at maturity are inversely correlated across soybean lines; however, carbon is in limited supply during maturation resulting in tradeoffs for the production of other reserves including oligosaccharides. During the late stages of seed development, the allocation of carbon for storage reserves changes. Lipid and protein levels decline while concentrations of indigestible raffinose family oligosaccharides (RFOs) increase, leading to a decreased crop value. Since the maternal source of carbon is diminished during seed maturation stages of development, carbon supplied to RFO synthesis likely comes from an internal, turned-over source and may contribute to the reduction in protein and lipid content in mature seeds. In this study, fast neutron (FN) mutagenized soybean populations with deletions in central carbon metabolic genes were examined for trends in oil, protein, sugar, and RFO accumulation leading to an altered final composition. Two lines with concurrent increases in oil and protein, by combined 10%, were identified. A delayed switch in carbon allocation towards RFO biosynthesis resulted in extended lipid accumulation and without compromising protein. Strategies for future soybean improvement using FN resources are described.

6.
J Exp Bot ; 69(18): 4395-4402, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29982623

RESUMO

The ability to manipulate expression of key biosynthetic enzymes has allowed the development of genetically modified plants that synthesise unusual lipids that are useful for biofuel and industrial applications. By taking advantage of the unique activities of enzymes from different species, tailored lipids with a targeted structure can be conceived. In this study we demonstrate the successful implementation of such an approach by metabolically engineering the oilseed crop Camelina sativa to produce 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) with medium-chain fatty acids (MCFAs). Different transgenic camelina lines that had been genetically modified to produce MCFAs through the expression of MCFA-specific thioesterases and acyltransferases were retransformed with the Euonymus alatus gene for diacylglycerol acetyltransferase (EaDAcT) that synthesises acetyl-TAGs. Concomitant RNAi suppression of acyl-CoA:diacylglycerol acyltransferase increased the levels of acetyl-TAG, with up to 77 mole percent in the best lines. However, the total oil content was reduced. Analysis of the composition of the acetyl-TAG molecular species using electrospray ionisation mass spectrometry demonstrated the successful synthesis of acetyl-TAG containing MCFAs. Field growth of high-yielding plants generated enough oil for quantification of viscosity. As part of an ongoing design-test-learn cycle, these results, which include not only the synthesis of 'designer' lipids but also their functional analysis, will lead to the future production of such molecules tailored for specific applications.


Assuntos
Brassicaceae/química , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Triglicerídeos/metabolismo , Euonymus/genética , Engenharia Metabólica , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Biologia Sintética
7.
Plant J ; 92(1): 82-94, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28715115

RESUMO

Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) catalyzes the transfer of an acetyl group from acetyl-CoA to the sn-3 position of diacylglycerol to form 3-acetyl-1,2-diacyl-sn-glycerol (acetyl-TAG). EaDAcT belongs to a small, plant-specific subfamily of the membrane bound O-acyltransferases (MBOAT) that acylate different lipid substrates. Sucrose gradient density centrifugation revealed that EaDAcT colocalizes to the same fractions as an endoplasmic reticulum (ER)-specific marker. By mapping the membrane topology of EaDAcT, we obtained an experimentally determined topology model for a plant MBOAT. The EaDAcT model contains four transmembrane domains (TMDs), with both the N- and C-termini orientated toward the lumen of the ER. In addition, there is a large cytoplasmic loop between the first and second TMDs, with the MBOAT signature region of the protein embedded in the third TMD close to the interface between the membrane and the cytoplasm. During topology mapping, we discovered two cysteine residues (C187 and C293) located on opposite sides of the membrane that are important for enzyme activity. In order to identify additional amino acid residues important for acetyltransferase activity, we isolated and characterized acetyltransferases from other acetyl-TAG-producing plants. Among them, the acetyltransferase from Euonymus fortunei possessed the highest activity in vivo and in vitro. Mutagenesis of conserved amino acids revealed that S253, H257, D258 and V263 are essential for EaDAcT activity. Alteration of residues unique to the acetyltransferases did not alter the unique acyl donor specificity of EaDAcT, suggesting that multiple amino acids are important for substrate recognition.


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Euonymus/enzimologia , Acetilcoenzima A/metabolismo , Diacilglicerol O-Aciltransferase/química , Diacilglicerol O-Aciltransferase/genética , Diglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Euonymus/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Especificidade por Substrato
8.
Biotechnol Biofuels ; 10: 69, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28331545

RESUMO

BACKGROUND: Acetyl-triacylglycerols (acetyl-TAGs) are unusual triacylglycerol (TAG) molecules that contain an sn-3 acetate group. Compared to typical triacylglycerol molecules (here referred to as long chain TAGs; lcTAGs), acetyl-TAGs possess reduced viscosity and improved cold temperature properties, which may allow direct use as a drop-in diesel fuel. Their different chemical and physical properties also make acetyl-TAGs useful for other applications such as lubricants and plasticizers. Acetyl-TAGs can be synthesized by EaDAcT, a diacylglycerol acetyltransferase enzyme originally isolated from Euonymus alatus (Burning Bush). The heterologous expression of EaDAcT in different organisms, including Saccharomyces cerevisiae, resulted in the accumulation of acetyl-TAGs in storage lipids. Microbial conversion of lignocellulose into acetyl-TAGs could allow biorefinery production of versatile molecules for biofuel and bioproducts. RESULTS: In order to produce acetyl-TAGs from abundant lignocellulose feedstocks, we expressed EaDAcT in S. cerevisiae previously engineered to utilize xylose as a carbon source. The resulting strains were capable of producing acetyl-TAGs when grown on different media. The highest levels of acetyl-TAG production were observed with growth on synthetic lab media containing glucose or xylose. Importantly, acetyl-TAGs were also synthesized by this strain in ammonia fiber expansion (AFEX)-pretreated corn stover hydrolysate (ACSH) at higher volumetric titers than previously published strains. The deletion of the four endogenous enzymes known to contribute to lcTAG production increased the proportion of acetyl-TAGs in the total storage lipids beyond that in existing strains, which will make purification of these useful lipids easier. Surprisingly, the strains containing the four deletions were still capable of synthesizing lcTAG, suggesting that the particular strain used in this study possesses additional undetermined diacylglycerol acyltransferase activity. Additionally, the carbon source used for growth influenced the accumulation of these residual lcTAGs, with higher levels in strains cultured on xylose containing media. CONCLUSION: Our results demonstrate that S. cerevisiae can be metabolically engineered to produce acetyl-TAGs when grown on different carbon sources, including hydrolysate derived from lignocellulose. Deletion of four endogenous acyltransferases enabled a higher purity of acetyl-TAGs to be achieved, but lcTAGs were still synthesized. Longer incubation times also decreased the levels of acetyl-TAGs produced. Therefore, additional work is needed to further manipulate acetyl-TAG production in this strain of S. cerevisiae, including the identification of other TAG biosynthetic and lipolytic enzymes and a better understanding of the regulation of the synthesis and degradation of storage lipids.

9.
Nat Commun ; 5: 3353, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24569486

RESUMO

Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste.


Assuntos
Vias Biossintéticas/genética , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Nicotiana/metabolismo , Atrativos Sexuais/biossíntese , Aldeídos/metabolismo , Animais , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Feminino , Proteínas de Insetos/genética , Masculino , Mariposas/classificação , Mariposas/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Plantas Geneticamente Modificadas , Plasmídeos/genética , Atrativos Sexuais/química , Atrativos Sexuais/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Especificidade da Espécie , Nicotiana/genética
10.
Plant Biotechnol J ; 9(8): 874-83, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22003502

RESUMO

Increasing the energy density of biomass by engineering the accumulation of triacylglycerols (TAGs) in vegetative tissues is synergistic with efforts to produce biofuels by conversion of lignocellulosic biomass. Typically, TAG accumulates in developing seeds, and little is known about the regulatory mechanisms and control factors preventing oil biosynthesis in vegetative tissues in most plants. Here, we engineered Arabidopsis thaliana to ectopically overproduce the transcription factor WRINKLED1 (WRI1) involved in the regulation of seed oil biosynthesis. Furthermore, we reduced the expression of APS1 encoding a major catalytic isoform of the small subunit of ADP-glucose pyrophosphorylase involved in starch biosynthesis using an RNAi approach. The resulting AGPRNAi-WRI1 lines accumulated less starch and more hexoses. In addition, these lines produced 5.8-fold more oil in vegetative tissues than plants with WRI1 or AGPRNAi alone. Abundant oil droplets were visible in vegetative tissues. TAG molecular species contained long-chain fatty acids, similar to those found in seed oils. In AGPRNAi-WRI1 lines, the relative expression level of sucrose synthase 2 was considerably elevated and correlated with the level of sugars. The relative expression of the genes encoding plastidic proteins involved in de novo fatty acid synthesis, biotin carboxyl carrier protein isoform 2 and acyl carrier protein 1, was also elevated. The relative contribution of TAG compared to starch to the overall energy density increased 9.5-fold in one AGPRNAi-WRI1 transgenic line consistent with altered carbon partitioning from starch to oil.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Óleos de Plantas/metabolismo , Amido/biossíntese , Fatores de Transcrição/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Agrobacterium/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Brassica/genética , Metabolismo dos Carboidratos , Carbono/metabolismo , DNA Bacteriano/genética , Eletroporação , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Engenharia Genética/métodos , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Confocal , Mutagênese Sítio-Dirigida , Fenótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Sementes/metabolismo , Fatores de Transcrição/genética , Triglicerídeos/biossíntese
11.
Plant Physiol ; 144(1): 197-205, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17351051

RESUMO

Iron, despite being an essential micronutrient, becomes toxic if present at high levels. As a result, plants possess carefully regulated mechanisms to acquire iron from the soil. The ferric reductase defective3 (frd3) mutant of Arabidopsis (Arabidopsis thaliana) is chlorotic and exhibits constitutive expression of its iron uptake responses. Consequently, frd3 mutants overaccumulate iron; yet, paradoxically, the frd3 phenotypes are due to a reduction in the amount of iron present inside frd3 leaf cells. The FRD3 protein belongs to the multidrug and toxin efflux family, members of which are known to export low-M(r) organic molecules. We therefore hypothesized that FRD3 loads an iron chelator necessary for the correct distribution of iron throughout the plant into the xylem. One such potential chelator is citrate. Xylem exudate from frd3 plants contains significantly less citrate and iron than the exudate from wild-type plants. Additionally, supplementation of growth media with citrate rescues the frd3 phenotypes. The ectopic expression of FRD3-GFP results in enhanced tolerance to aluminum in Arabidopsis roots, a hallmark of organic acid exudation. Consistent with this result, approximately 3 times more citrate was detected in root exudate from plants ectopically expressing FRD3-GFP. Finally, heterologous studies in Xenopus laevis oocytes reveal that FRD3 mediates the transport of citrate. These results all strongly support the hypothesis that FRD3 effluxes citrate into the root vasculature, a process important for the translocation of iron to the leaves, as well as confirm previous reports suggesting that iron moves through the xylem as a ferric-citrate complex. Our results provide additional answers to long-standing questions about iron chelation in the vasculature and organic acid transport.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Cítrico/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Alumínio/metabolismo , Animais , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Xenopus laevis , Xilema/metabolismo
12.
Plant J ; 47(3): 467-79, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16813577

RESUMO

All plants, except for the grasses, must reduce Fe(III) to Fe(II) in order to acquire iron. In Arabidopsis, the enzyme responsible for this reductase activity in the roots is encoded by FRO2. Two Arabidopsis mutants, frd4-1 and frd4-2, were isolated in a screen for plants that do not induce Fe(III) chelate reductase activity in their roots in response to iron deficiency. frd4 mutant plants are chlorotic and grow more slowly than wild-type Col-0 plants. Additionally, frd4 chloroplasts are smaller in size and possess dramatically fewer thylakoid membranes and grana stacks when compared with wild-type chloroplasts. frd4 mutant plants express both FRO2 and IRT1 mRNA normally in their roots under iron deficiency, arguing against any defects in systemic iron-deficiency signaling. Further, transgenic frd4 plants accumulate FRO2-dHA fusion protein under iron-deficient conditions, suggesting that the frd4 mutation acts post-translationally in reducing Fe(III) chelate reductase activity. FRO2-dHA appears to localize to the plasma membrane of root epidermal cells in both Col-0 and frd4-1 transgenic plants when grown under iron-deficient conditions. Map-based cloning revealed that the frd4 mutations reside in cpFtsY, which encodes a component of one of the pathways responsible for the insertion of proteins into the thylakoid membranes of the chloroplast. The presence of cpFtsY mRNA and protein in the roots of wild-type plants suggests additional roles for this protein, in addition to its known function in targeting proteins to the thylakoid membrane in chloroplasts.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , FMN Redutase/metabolismo , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Clonagem Molecular , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , RNA Mensageiro/metabolismo , Alinhamento de Sequência
13.
Plant Cell ; 15(12): 3007-19, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14630966

RESUMO

We report the identification and biotechnological utility of a plant gene encoding the tocopherol (vitamin E) biosynthetic enzyme 2-methyl-6-phytylbenzoquinol methyltransferase. This gene was identified by map-based cloning of the Arabidopsis mutation vitamin E pathway gene3-1 (vte3-1), which causes increased accumulation of delta-tocopherol and decreased gamma-tocopherol in the seed. Enzyme assays of recombinant protein supported the hypothesis that At-VTE3 encodes a 2-methyl-6-phytylbenzoquinol methyltransferase. Seed-specific expression of At-VTE3 in transgenic soybean reduced seed delta-tocopherol from 20 to 2%. These results confirm that At-VTE3 protein catalyzes the methylation of 2-methyl-6-phytylbenzoquinol in planta and show the utility of this gene in altering soybean tocopherol composition. When At-VTE3 was coexpressed with At-VTE4 (gamma-tocopherol methyltransferase) in soybean, the seed accumulated to >95% alpha-tocopherol, a dramatic change from the normal 10%, resulting in a greater than eightfold increase of alpha-tocopherol and an up to fivefold increase in seed vitamin E activity. These findings demonstrate the utility of a gene identified in Arabidopsis to alter the tocopherol composition of commercial seed oils, a result with both nutritional and food quality implications.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Metiltransferases/genética , Óleo de Soja/metabolismo , Tocoferóis/metabolismo , Vitamina E/biossíntese , Alelos , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metiltransferases/metabolismo , Dados de Sequência Molecular , Mutação , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Glycine max/enzimologia , Glycine max/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA