Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446789

RESUMO

Aflatoxin B1 (AFB1) is a mycotoxin considered a potent carcinogen for humans that contaminates a wide range of crops. Various strategies have been established to reduce or block the synthesis of AFB1 in food and feed. The use of aqueous extracts derived from plants with high antioxidant activity has been a subject of study in recent years due to their efficacy in inhibiting AFB1. In this study, we assessed the effect of Aloysia citrodora aqueous extract on Aspergillus flavus growth and on AFB1 production. A bio-guided fractionation followed by High Performance Liquid Chromatography (HPLC) and Mass spectrometry analysis of the active fraction were applied to identify the candidate molecules responsible for the dose-effect inhibition of AFB1 synthesis. Our results revealed that polyphenols are the molecules implicated in AFB1 inhibition, achieving almost a total inhibition of the toxin production (99%). We identified luteolin-7-diglucuronide as one of the main constituents in A. citrodora extract, and demonstrated that it is able to inhibit, by itself, AFB1 production by 57%. This is the first study demonstrating the anti-Aflatoxin B1 effect of this molecule, while other polyphenols surely intervene in A. citrodora anti-AFB1 activity.


Assuntos
Aspergillus flavus , Verbenaceae , Humanos , Polifenóis/farmacologia , Aflatoxina B1
2.
Toxins (Basel) ; 13(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072350

RESUMO

Aflatoxin B1 (AFB1) is a potent carcinogenic mycotoxin that contaminates numerous crops pre- and post-harvest. To protect foods and feeds from such toxins without resorting to pesticides, the use of plant extracts has been increasingly studied. The most interesting candidate plants are those with strong antioxidative activity because oxidation reactions may interfere with AFB1 production. The present study investigates how an aqueous extract of Mimosa tenuiflora bark affects both the growth of Aspergillus flavus and AFB1 production. The results reveal a dose-dependent inhibition of toxin synthesis with no impact on fungal growth. AFB1 inhibition is related to a down-modulation of the cluster genes of the biosynthetic pathway and especially to the two internal regulators aflR and aflS. Its strong anti-oxidative activity also allows the aqueous extract to modulate the expression of genes involved in fungal oxidative-stress response, such as msnA, mtfA, atfA, or sod1. Finally, a bio-guided fractionation of the aqueous extract demonstrates that condensed tannins play a major role in the anti-aflatoxin activity of Mimosa tenuiflora bark.


Assuntos
Aflatoxina B1/antagonistas & inibidores , Aspergillus flavus/efeitos dos fármacos , Mimosa , Extratos Vegetais/farmacologia , Taninos/farmacologia , Aflatoxina B1/biossíntese , Aflatoxina B1/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/patogenicidade , Cromatografia Líquida de Alta Pressão , Mimosa/química , Estresse Oxidativo/efeitos dos fármacos
3.
Colloids Surf B Biointerfaces ; 195: 111267, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32731092

RESUMO

Carbohydrates are the most recurrent materials employed for active components encapsulation using twin-screw extrusion. However, the influence of process parameters on the properties of the final product remains a challenge. In this paper, special attention was given to the incorporation of a hydrophobic model compound (MCT-oil), in a maltodextrin matrix with a compatibilizing biopolymer. The effects of the extrusion parameters, as well as the influence of different formulations were analyzed. The mild extrusion conditions allowed obtaining blends with acceptable texture and viscosity to enhance the dispersion of the active compound. The encapsulation systems obtained were in a glassy state at room temperature and they remained stable at 60 % RH for a long time. Satisfactory incorporation rates of MCT-oil were found reaching encapsulation efficiencies up to 90 %. These results showed that the chosen compatibilizing agent enhanced the dispersion and stabilization of the MCT-oil within the matrix and significantly improved encapsulation.


Assuntos
Suplementos Nutricionais , Polissacarídeos , Biopolímeros , Composição de Medicamentos
4.
Curr Microbiol ; 77(2): 210-219, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31786637

RESUMO

Black aspergilli produce many bioactive compounds: enzymes, organic acids, and secondary metabolites. One such fungus, Aspergillus tubingensis G131, isolated from French Mediterranean vineyards, produces secondary metabolites with antioxidant properties that can be extracted with ethanol. In this study, crude antioxidant extracts obtained from A. tubingensis G131 cultures were encapsulated with two types of chitosan matrix. Spray-drying was used to obtain dried particles from a dispersion of fungal crude extracts in a solution of the coating agent chitosan. This process appeared to be an efficient method for obtaining a dry extract with antioxidant activity. Three types of fungal extracts, with different antioxidant capacities, were produced: two different concentrations of crude extract and a semi-purified extract. In this study, the chitosan matrices for encapsulation were chosen on the basis of their antimicrobial activities for wine applications. Classical low molecular weight chitosan was compared with NoBrett Inside® which is already used to prevent the development of Brettanomyces spp. in wine. The objective of this study was to confirm that both antioxidant (fungal extract) and antimicrobial (chitosan) properties were preserved after spray-drying. The combination of these two properties and the powder formulation of this entirely natural product would make it a good alternative to chemicals, such as sulfites, in the food and wine industries.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Aspergillus/química , Quitosana/química , Vinho/análise , Dessecação/métodos , Fungos/química , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA