Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Cycle ; 17(5): 605-615, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29171785

RESUMO

RNA polymerase (Pol) III transcribes small untranslated RNAs that are essential for cellular homeostasis and growth. Its activity is regulated by inactivation of tumor suppressor proteins and overexpression of the oncogene c-MYC, but the concerted action of these tumor-promoting factors on Pol III transcription has not yet been assessed. In order to comprehensively analyse the regulation of Pol III transcription during tumorigenesis we employ a model system that relies on the expression of five genetic elements to achieve cellular transformation. Expression of these elements in six distinct transformation intermediate cell lines leads to the inactivation of TP53, RB1, and protein phosphatase 2A, as well as the activation of RAS and the protection of telomeres by TERT, thereby conducting to full tumoral transformation of IMR90 fibroblasts. Transformation is accompanied by moderately enhanced levels of a subset of Pol III-transcribed RNAs (7SK; MRP; H1). In addition, mRNA and/or protein levels of several Pol III subunits and transcription factors are upregulated, including increased protein levels of TFIIIB and TFIIIC subunits, of SNAPC1 and of Pol III subunits. Strikingly, the expression of POLR3G and of SNAPC1 is strongly enhanced during transformation in this cellular transformation model. Collectively, our data indicate that increased expression of several components of the Pol III transcription system accompanied by a 2-fold increase in steady state levels of a subset of Pol III RNAs is sufficient for sustaining tumor formation.


Assuntos
RNA Polimerase III/metabolismo , Transcrição Gênica , Animais , Transformação Celular Neoplásica , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Modelos Biológicos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase III/genética , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Telomerase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
2.
Proc Natl Acad Sci U S A ; 107(9): 4176-81, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20154270

RESUMO

Transcription in eukaryotic nuclei is carried out by DNA-dependent RNA polymerases I, II, and III. Human RNA polymerase III (Pol III) transcribes small untranslated RNAs that include tRNAs, 5S RNA, U6 RNA, and some microRNAs. Increased Pol III transcription has been reported to accompany or cause cell transformation. Here we describe a Pol III subunit (RPC32beta) that led to the demonstration of two human Pol III isoforms (Pol IIIalpha and Pol IIIbeta). RPC32beta-containing Pol IIIbeta is ubiquitously expressed and essential for growth of human cells. RPC32alpha-containing Pol IIIalpha is dispensable for cell survival, with expression being restricted to undifferentiated ES cells and to tumor cells. In this regard, and most importantly, suppression of RPC32alpha expression impedes anchorage-independent growth of HeLa cells, whereas ectopic expression of RPC32alpha in IMR90 fibroblasts enhances cell transformation and dramatically changes the expression of several tumor-related mRNAs and that of a subset of Pol III RNAs. These results identify a human Pol III isoform and isoform-specific functions in the regulation of cell growth and transformation.


Assuntos
Divisão Celular , Transformação Celular Neoplásica , Isoenzimas/metabolismo , RNA Polimerase III/metabolismo , Diferenciação Celular , Eletroforese em Gel de Poliacrilamida , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA