Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell Chem Biol ; 31(2): 221-233.e14, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37875111

RESUMO

Methotrexate (MTX) is a tight-binding dihydrofolate reductase (DHFR) inhibitor, used as both an antineoplastic and immunosuppressant therapeutic. MTX, like folate undergoes folylpolyglutamate synthetase-mediated γ-glutamylation, which affects cellular retention and target specificity. Mechanisms of MTX resistance in cancers include a decrease in MTX poly-γ-glutamylation and an upregulation of DHFR. Here, we report a series of potent MTX-based proteolysis targeting chimeras (PROTACs) to investigate DHFR degradation pharmacology and one-carbon biochemistry. These on-target, cell-active PROTACs show proteasome- and E3 ligase-dependent activity, and selective degradation of DHFR in multiple cancer cell lines. By comparison, treatment with MTX increases cellular DHFR protein expression. Importantly, these PROTACs produced distinct, less-lethal phenotypes compared to MTX. The chemical probe set described here should complement conventional DHFR inhibitors and serve as useful tools for studying one-carbon biochemistry and dissecting complex polypharmacology of MTX and related drugs. Such compounds may also serve as leads for potential autoimmune and antineoplastic therapeutics.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carbono , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Metotrexato/farmacologia , Metotrexato/metabolismo , Metotrexato/uso terapêutico , Neoplasias/tratamento farmacológico , Quimera de Direcionamento de Proteólise , Tetra-Hidrofolato Desidrogenase/metabolismo
2.
Haematologica ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38031763

RESUMO

Acute lymphoblastic leukemia (ALL) is an aggressive leukemia which can be derived from either T-cell or B-cell precursors. With current treatments, the survival rate is high, but the treatments are highly toxic with severe side effects. Individual mutations in IL7Rssand RAS pathways have been previously shown to be prevalent in ALL and especially in relapsed patients. The relationship of IL-7R77and RAS was investigated by transducing immature mouse thymocytes with the combination of these mutants. The resultant ALL cells were analyzed to identify the regulators and the oncoproteins that are upregulated or downregulated by the combination of IL7Rα with NRAS. Leukemia cells showed a significant increase in IL7Rw-mediated BCL2 expression, and an increase in MYC protein levels, was mainly induced by NRAS signaling. MYC was both necessary and sufficient to replace mutant NRAS and drugs targeting the MYC pathway showed a therapeutic benefit in IL-7R7/NRAS T-ALL. We suggest that MYC protein stability can be regulated by PLK-1 kinase, which was increased mainly by the NRAS signal. These studies identify novel pathways of oncogenesis and new targets for intervention that could lead to better therapeutic development.

3.
J Vis Exp ; (196)2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37358271

RESUMO

Transduced mouse immature thymocytes can be differentiated into T cells in vitro using the delta-like 4-expressing bone marrow stromal cell line co-culture system (OP9-DL4). As retroviral transduction requires dividing cells for transgene integration, OP9-DL4 provides a suitable in vitro environment for cultivating hematopoietic progenitor cells. This is particularly advantageous when studying the effects of the expression of a specific gene during normal T cell development and leukemogenesis, as it allows researchers to circumvent the time-consuming process of generating transgenic mice. To achieve successful outcomes, a series of coordinated steps involving the simultaneous manipulation of different types of cells must be carefully performed. Although these are very well-established procedures, the lack of a common source in the literature often means a series of optimizations are required, which can be time-consuming. This protocol has been shown to be efficient in transducing primary thymocytes followed by differentiation on OP9-DL4 cells. Detailed here is a protocol that can serve as a quick and optimized guide for the co-culture of retrovirally transduced thymocytes on OP9-DL4 stromal cells.


Assuntos
Leucemia de Células T , Timócitos , Camundongos , Animais , Timócitos/metabolismo , Técnicas de Cocultura , Diferenciação Celular/fisiologia , Células Estromais , Camundongos Transgênicos , Oncogenes , Leucemia de Células T/genética , Leucemia de Células T/metabolismo
4.
Front Immunol ; 14: 1021824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153622

RESUMO

Mucosal delivery of IL-27 has been shown to have a therapeutic benefit in murine models of inflammatory bowel disease (IBD). The IL-27 effect was associated with phosphorylated STAT1 (pSTAT1), a product of IL27 receptor signaling, in bowel tissue. To determine whether IL-27 acted directly on colonic epithelium, murine colonoids and primary intact colonic crypts were shown to be unresponsive to IL-27 in vitro and to lack detectable IL-27 receptors. On the other hand, macrophages, which are present in inflamed colon tissue, were responsive to IL-27 in vitro. IL-27 induced pSTAT1 in macrophages, the transcriptome indicated an IFN-like signature, and supernatants induced pSTAT1 in colonoids. IL-27 induced anti-viral activity in macrophages and MHC Class II induction. We conclude that the effects of mucosal delivery of IL-27 in murine IBD are in part based on the known effects of IL27 inducing immunosuppression of T cells mediated by IL-10. We also conclude that IL-27 has potent effects on macrophages in inflamed colon tissue, generating mediators that in turn act on colonic epithelium.


Assuntos
Doenças Inflamatórias Intestinais , Interleucina-27 , Camundongos , Animais , Interleucina-27/uso terapêutico , Colo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Macrófagos , Epitélio
5.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675167

RESUMO

Four Ras guanine nucleotide-releasing proteins (RasGRP1 through 4) belong to the family of guanine nucleotide exchange factors (GEFs). RasGRPs catalyze the release of GDP from small GTPases Ras and Rap and facilitate their transition from an inactive GDP-bound to an active GTP-bound state. Thus, they regulate critical cellular responses via many downstream GTPase effectors. Similar to other RasGRPs, the catalytic module of RasGRP1 is composed of the Ras exchange motif (REM) and Cdc25 domain, and the EF hands and C1 domain contribute to its cellular localization and regulation. RasGRP1 can be activated by a diacylglycerol (DAG)-mediated membrane recruitment and protein kinase C (PKC)-mediated phosphorylation. RasGRP1 acts downstream of the T cell receptor (TCR), B cell receptors (BCR), and pre-TCR, and plays an important role in the thymocyte maturation and function of peripheral T cells, B cells, NK cells, mast cells, and neutrophils. The dysregulation of RasGRP1 is known to contribute to numerous disorders that range from autoimmune and inflammatory diseases and schizophrenia to neoplasia. Given its position at the crossroad of cell development, inflammation, and cancer, RASGRP1 has garnered interest from numerous disciplines. In this review, we outline the structure, function, and regulation of RasGRP1 and focus on the existing knowledge of the role of RasGRP1 in leukemia and other cancers.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Sistema Imunitário , Neoplasias , Humanos , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Nucleotídeos de Guanina , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T , Linfócitos T/imunologia , Sistema Imunitário/citologia , Sistema Imunitário/imunologia
6.
Cytokine ; 160: 156049, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36201890

RESUMO

OVERVIEW: IL-7 is a member of the family of cytokines with four anti-parallel α helixes that bind Type I cytokine receptors. It is produced by stromal cells and is required for development and homeostatic survival of lymphoid cells. GENOMIC ARCHITECTURE: Interleukin 7 (IL7) human IL7: gene ID: 3574 on ch 8; murine Il7 gene ID: 16,196 on ch 3. PROTEIN: Precursor contains a signal sequence, mature human IL-7 peptide 152aa, predicted 17.4kd peptide, glycosylated resulting in 25kd. Crystal structure: http://www.rcsb.org/structure/3DI2. REGULATION OF IL-7 PRODUCTION: Major producers are stromal cells in thymus, bone marrow and lymphoid organs but also reported in other tissues. Production is primarily constitutive but reported to be affected by IFNγ and other factors. IL-7 RECEPTORS: Two chains IL-7Rα (IL-7R) and γc (IL-2RG). Human IL-7R: gene ID 3575 on ch 5; human IL2RG: gene ID 3561 on ch X; mouse IL-7R: gene ID 16,197 on ch 15; murine Il2rg gene ID 16,186 on ch X. Member of γc family of receptors for cytokines IL-2, -4, -9, -15, and -21. Primarily expressed on lymphocytes but reports of other cell types. Expression in T-cells downregulated by IL-7. Low expression on Tregs, no expression on mature B-cells. Crystal structure: http://www.rcsb.org/structure/3DI2. IL-7 RECEPTOR SIGNAL TRANSDUCTION PATHWAYS: Major signals through JAK1, JAK3 to STAT5 and through non-canonical STAT3, STAT1, PI3K/AKT and MEK/ERK pathways. BIOLOGICAL ACTIVITY OF IL-7: Required for survival of immature thymocytes, naïve T-cells, memory T-cells, pro-B-cells and innate lymphocytes. Pharmacological treatment with IL-7 induces expansion of naïve and memory T-cells and pro-B-cells. ABNORMALITIES OF THE IL-7 PATHWAY IN DISEASE: Deficiencies in the IL-7 pathway in humans and mice result in severe combined immunodeficiency due to lymphopenia. Excessive signaling of the pathway in mice drives autoimmune diseases and in humans is associated with autoimmune syndromes including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, sarcoidosis, atopic dermatitis and asthma. Mutations in the IL-7 receptor pathway drive acute lymphoblastic leukemia. CLINICAL APPLICATIONS: IL-7 has been evaluated in patients with cancer and shown to expand lymphocytes. It accelerated lymphocyte recovery after hematopoietic stem cell transfer, and increased lymphocyte counts in AIDS patients and sepsis patients. Monoclonal antibodies blocking the IL-7 receptor are being evaluated in autoimmune diseases. Cytotoxic monoclonals are being evaluated in acute lymphoblastic leukemia. Drugs blocking the signal transduction pathway are being tested in autoimmunity and acute lymphoblastic leukemia.


Assuntos
Doenças Autoimunes , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Anticorpos Monoclonais , Humanos , Interleucina-2/metabolismo , Interleucina-7/farmacologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sinais Direcionadores de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo , Fator de Transcrição STAT5/metabolismo
7.
Adv Biol Regul ; 80: 100788, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33578108

RESUMO

The IL-7 pathway is required for normal T cell development and survival. In recent years the pathway has been shown to be a major driver of acute lymphoblastic leukemia (ALL), the most common cancer in children. Gain-of-function mutations in the alpha chain of the IL-7 receptor found in ALL patients clearly demonstrated that this pathway was a driver. However mutant IL-7R alone was insufficient to transform primary T cell progenitors, indicating that cooperating mutations were required. Here we review evidence for additional oncogenic mutations in the IL-7 pathway. We discuss several oncogenes, loss of tumor suppressor genes and epigenetic effects that can cooperate with mutant IL-7 receptor. These include NRas, HOXA, TLX3, Notch 1, Arf, PHF6, WT1, PRC, PTPN2 and CK2. As new therapeutics targeting the IL-7 pathway are developed, combination with agents directed to cooperating pathways offer hope for novel therapies for ALL.


Assuntos
Regulação Leucêmica da Expressão Gênica , Interleucina-7/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Interleucina-7/genética , Transdução de Sinais/genética , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Criança , Epigênese Genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Interleucina-7/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores de Interleucina-7/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo
8.
Sci Immunol ; 5(48)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503875

RESUMO

Oropharyngeal candidiasis (OPC; thrush) is an opportunistic infection caused by the commensal fungus Candida albicans Interleukin-17 (IL-17) and IL-22 are cytokines produced by type 17 lymphocytes. Both cytokines mediate antifungal immunity yet activate quite distinct downstream signaling pathways. While much is now understood about how IL-17 promotes immunity in OPC, the activities of IL-22 are far less well delineated. We show that, despite having similar requirements for induction from type 17 cells, IL-22 and IL-17 function nonredundantly during OPC. We find that the IL-22 and IL-17 receptors are required in anatomically distinct locations within the oral mucosa; loss of IL-22RA1 or signal transducer and activator of transcription 3 (STAT3) in the oral basal epithelial layer (BEL) causes susceptibility to OPC, whereas IL-17RA is needed in the suprabasal epithelial layer (SEL). Transcriptional profiling of the tongue linked IL-22/STAT3 not only to oral epithelial cell proliferation and survival but also, unexpectedly, to driving an IL-17-specific gene signature. We show that IL-22 mediates regenerative signals on the BEL that replenish the IL-17RA-expressing SEL, thereby restoring the ability of the oral epithelium to respond to IL-17 and thus to mediate antifungal events. Consequently, IL-22 signaling in BEL "licenses" IL-17 signaling in the oral mucosa, revealing spatially distinct yet cooperative activities of IL-22 and IL-17 in oral candidiasis.


Assuntos
Candidíase Bucal/imunologia , Células Epiteliais/imunologia , Interleucina-17/imunologia , Interleucinas/imunologia , Mucosa Bucal/imunologia , Fator de Transcrição STAT3/imunologia , Animais , Candida albicans/imunologia , Feminino , Interleucina-17/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Interleucina 22
9.
Leukemia ; 34(1): 35-49, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31439943

RESUMO

Pediatric T cell acute lymphoblastic leukemia (T-ALL) cells frequently contain mutations in the interleukin-7 (IL-7) receptor pathway or respond to IL-7 itself. To target the IL-7 receptor on T-ALL cells, murine monoclonal antibodies (MAbs) were developed against the human IL-7Rα chain and chimerized with human IgG1 constant regions. Crystal structures demonstrate that the two MAbs bound different IL-7Rα epitopes. The MAbs mediated antibody-dependent cell-mediated cytotoxicity (ADCC) against patient-derived xenograft (PDX) T-ALL cells, which was improved by combining two MAbs. In vivo, the MAbs showed therapeutic efficacy via ADCC-dependent and independent mechanisms in minimal residual and established disease. PDX T-ALL cells that relapsed following a course of chemotherapy displayed elevated IL-7Rα, and MAb treatment is effective against relapsing disease, suggesting the use of anti-IL7Rα MAbs in relapsed T-ALL patients or patients that do not respond to chemotherapy.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Interleucina-7/antagonistas & inibidores , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Oncogene ; 39(5): 975-986, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31586130

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a dismal prognosis in patients with resistant or relapsed disease. Although NOTCH is a known driver in T-ALL, its clinical inhibition has significant limitations. Our previous studies suggested that NRARP, a negative regulator of Notch signaling, could have a suppressive role in T-ALL. Here, we report that NRARP levels are significantly increased in primary T-ALL cells suggesting that NRARP is not sufficient to block NOTCH oncogenic signals. Interestingly, although NRARP overexpression blocks NOTCH1 signaling and delays the proliferation of T-ALL cells that display high levels of Notch1 signaling, it promotes the expansion of T-ALL cells with lower levels of Notch1 activity. We found that NRARP interacts with lymphoid enhancer-binding factor 1 (LEF1) and potentiates Wnt signaling in T-ALL cells with low levels of Notch. Together these results indicate that NRARP plays a dual role in T-ALL pathogenesis, regulating both Notch and Wnt pathways, with opposite functional effects depending on Notch activity. Consistent with this hypothesis, mice transplanted with T-cells co-expressing NOTCH1 and NRARP develop leukemia later than mice transplanted with T-NOTCH1 cells. Importantly, mice transplanted with T-cells overexpressing NRARP alone developed leukemia with similar kinetics to those transplanted with T-NOTCH1 cells. Our findings uncover a role for NRARP in T-ALL pathogenesis and indicate that Notch inhibition may be detrimental for patients with low levels of Notch signaling, which would likely benefit from the use of Wnt signaling inhibitors. Importantly, our findings may extend to other cancers where Notch and Wnt play a role.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores Notch/metabolismo , Via de Sinalização Wnt , Linhagem Celular Tumoral , Humanos , Regulação para Cima
11.
Nat Immunol ; 20(12): 1584-1593, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31745336

RESUMO

The cytokine IL-7 and its receptor, IL-7R, are critical for T cell and, in the mouse, B cell development, as well as differentiation and survival of naive T cells, and generation and maintenance of memory T cells. They are also required for innate lymphoid cell (ILC) development and maintenance, and consequently for generation of lymphoid structures and barrier defense. Here we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impact of their deregulation, placing a particular emphasis on their 'dark side' as promoters of cancer development. We also explore therapeutic implications and opportunities associated with either positive or negative modulation of the IL-7-IL-7R signaling axis.


Assuntos
Imunoterapia/tendências , Interleucina-7/metabolismo , Neoplasias/imunologia , Receptores de Interleucina-7/metabolismo , Linfócitos T/fisiologia , Animais , Diferenciação Celular , Sobrevivência Celular , Homeostase , Humanos , Interleucina-7/imunologia , Receptores de Interleucina-7/imunologia
12.
Eur Respir J ; 54(1)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31196943

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death globally. The lack of effective treatments results from an incomplete understanding of the underlying mechanisms driving COPD pathogenesis.Interleukin (IL)-22 has been implicated in airway inflammation and is increased in COPD patients. However, its roles in the pathogenesis of COPD is poorly understood. Here, we investigated the role of IL-22 in human COPD and in cigarette smoke (CS)-induced experimental COPD.IL-22 and IL-22 receptor mRNA expression and protein levels were increased in COPD patients compared to healthy smoking or non-smoking controls. IL-22 and IL-22 receptor levels were increased in the lungs of mice with experimental COPD compared to controls and the cellular source of IL-22 included CD4+ T-helper cells, γδ T-cells, natural killer T-cells and group 3 innate lymphoid cells. CS-induced pulmonary neutrophils were reduced in IL-22-deficient (Il22 -/-) mice. CS-induced airway remodelling and emphysema-like alveolar enlargement did not occur in Il22 -/- mice. Il22 -/- mice had improved lung function in terms of airway resistance, total lung capacity, inspiratory capacity, forced vital capacity and compliance.These data highlight important roles for IL-22 and its receptors in human COPD and CS-induced experimental COPD.


Assuntos
Enfisema/etiologia , Interleucinas/fisiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Receptores de Interleucina/fisiologia , Remodelação das Vias Aéreas , Resistência das Vias Respiratórias , Animais , Enfisema/patologia , Feminino , Humanos , Imunidade Inata , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Produtos do Tabaco , Interleucina 22
13.
Leukemia ; 33(9): 2155-2168, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30850736

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer for which treatment options often result in incomplete therapeutic efficacy and long-term side-effects. Interleukin 7 (IL-7) and its receptor IL-7Rα promote T-ALL development and mutational activation of IL-7Rα associates with very high risk in relapsed disease. Using combinatorial phage-display libraries and antibody reformatting, we generated a fully human IgG1 monoclonal antibody (named B12) against both wild-type and mutant human IL-7Rα, predicted to form a stable complex with IL-7Rα at a different site from IL-7. B12 impairs IL-7/IL-7R-mediated signaling, sensitizes T-ALL cells to treatment with dexamethasone and can induce cell death per se. The antibody also promotes antibody-dependent natural killer-mediated leukemia cytotoxicity in vitro and delays T-cell leukemia development in vivo, reducing tumor burden and promoting mouse survival. B12 is rapidly internalized and traffics to the lysosome, rendering it an attractive vehicle for targeted intracellular delivery of cytotoxic cargo. Consequently, we engineered a B12-MMAE antibody-drug conjugate and provide proof-of-concept evidence that it has increased leukemia cell killing abilities as compared with the naked antibody. Our studies serve as a stepping stone for the development of novel targeted therapies in T-ALL and other diseases where IL-7Rα has a pathological role.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/economia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Interleucina-7/metabolismo , Animais , Linhagem Celular , Humanos , Imunoglobulina G/metabolismo , Interleucina-7/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
14.
Nat Commun ; 9(1): 5099, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504842

RESUMO

Neutrophils are a vital component of immune protection, yet in cancer they may promote tumour progression, partly by generating reactive oxygen species (ROS) that disrupts lymphocyte functions. Metabolically, neutrophils are often discounted as purely glycolytic. Here we show that immature, c-Kit+ neutrophils subsets can engage in oxidative mitochondrial metabolism. With limited glucose supply, oxidative neutrophils use mitochondrial fatty acid oxidation to support NADPH oxidase-dependent ROS production. In 4T1 tumour-bearing mice, mitochondrial fitness is enhanced in splenic neutrophils and is driven by c-Kit signalling. Concordantly, tumour-elicited oxidative neutrophils are able to maintain ROS production and T cell suppression when glucose utilisation is restricted. Consistent with these findings, peripheral blood neutrophils from patients with cancer also display increased immaturity, mitochondrial content and oxidative phosphorylation. Together, our data suggest that the glucose-restricted tumour microenvironment induces metabolically adapted, oxidative neutrophils to maintain local immune suppression.


Assuntos
Mitocôndrias/metabolismo , Neutrófilos/fisiologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Células Cultivadas , Citometria de Fluxo , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microscopia Confocal , Neutrófilos/metabolismo , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
15.
Oncotarget ; 9(32): 22605-22617, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29854301

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Current chemotherapy is quite toxic in growing children and more directed therapeutics are being sought. The IL-7R pathway is a major driver of ALL and here we evaluate two drugs directed to that pathway using a model of T cell ALL. Mutant gain-of-function IL-7Rα was transduced into an IL-7-dependent murine thymocyte line conferring ligand-independent survival and growth. JAK1 is associated with IL-7Rα and mediates signaling from the mutant receptor. In vitro, treating the transformed cell line with the JAK1/2 inhibitor ruxolitinib inhibited ligand-independent signaling and induced cell death. Transfer of the transformed cell line into mice resulted in aggressive leukemia and untreated mice succumbed in about three weeks. Treatment with ruxolitinib incorporated into chow showed a potent therapeutic benefit with reduction in leukemic burden and extension of survival. BCL-2 is an anti-apoptotic downstream mediator of the IL-7R survival mechanism. Venetoclax, an inhibitor of BCL-2, showed activity against the transformed cell line in vitro and could be combined with ruxolitinib in vivo. These findings support the therapeutic potential of treating T-ALL by targeting the IL-7R pathway.

16.
Front Immunol ; 9: 1270, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922293

RESUMO

The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine's diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed.


Assuntos
Citocinas/metabolismo , Mucosa Intestinal/metabolismo , Animais , Apoptose/genética , Permeabilidade da Membrana Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Quimiocinas/metabolismo , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunidade nas Mucosas , Mucosa Intestinal/imunologia
17.
JCI Insight ; 3(5)2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29515037

RESUMO

BACKGROUND: A defining pathophysiologic feature of sepsis is profound apoptosis-induced death and depletion of CD4+ and CD8+ T cells. Interleukin-7 (IL-7) is an antiapoptotic common γ-chain cytokine that is essential for lymphocyte proliferation and survival. Clinical trials of IL-7 in over 390 oncologic and lymphopenic patients showed that IL-7 was safe, invariably increased CD4+ and CD8+ lymphocyte counts, and improved immunity. METHODS: We conducted a prospective, randomized, double-blind, placebo-controlled trial of recombinant human IL-7 (CYT107) in patients with septic shock and severe lymphopenia. Twenty-seven patients at academic sites in France and the United States received CYT107 or placebo for 4 weeks. Primary aims were to determine the safety of CYT107 in sepsis and its ability to reverse lymphopenia. RESULTS: CYT107 was well tolerated without evidence of inducing cytokine storm or worsening inflammation or organ dysfunction. CYT107 caused a 3- to 4-fold increase in absolute lymphocyte counts and in circulating CD4+ and CD8+ T cells that persisted for weeks after drug administration. CYT107 also increased T cell proliferation and activation. CONCLUSIONS: This is the first trial of an immunoadjuvant therapy targeting defects in adaptive immunity in patients with sepsis. CYT107 reversed the marked loss of CD4+ and CD8+ immune effector cells, a hallmark of sepsis and a likely key mechanism in its morbidity and mortality. CYT107 represents a potential new way forward in the treatment of patients with sepsis by restoring adaptive immunity. Such immune-based therapy should be broadly protective against diverse pathogens including multidrug resistant bacteria that preferentially target patients with impaired immunity. TRIAL REGISTRATION: Trials registered at clinicaltrials.gov: NCT02640807 and NCT02797431. FUNDING: Revimmune, NIH National Institute of General Medical Sciences GM44118.


Assuntos
Tolerância Imunológica/efeitos dos fármacos , Interleucina-7/administração & dosagem , Ativação Linfocitária/efeitos dos fármacos , Linfopenia/tratamento farmacológico , Choque Séptico/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Método Duplo-Cego , Humanos , Interleucina-7/efeitos adversos , Contagem de Linfócitos , Linfopenia/sangue , Linfopenia/imunologia , Linfopenia/mortalidade , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Choque Séptico/sangue , Choque Séptico/imunologia , Choque Séptico/mortalidade , Resultado do Tratamento
19.
Inflamm Bowel Dis ; 24(5): 1005-1020, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29554272

RESUMO

Background: Epidemiological studies indicate that the use of artificial sweeteners doubles the risk for Crohn's disease (CD). Herein, we experimentally quantified the impact of 6-week supplementation with a commercial sweetener (Splenda; ingredients sucralose maltodextrin, 1:99, w/w) on both the severity of CD-like ileitis and the intestinal microbiome alterations using SAMP1/YitFc (SAMP) mice. Methods: Metagenomic shotgun DNA sequencing was first used to characterize the microbiome of ileitis-prone SAMP mice. Then, 16S rRNA microbiome sequencing, quantitative polymerase chain reaction, fluorescent in situ hybridization (FISH), bacterial culture, stereomicroscopy, histology, and myeloperoxidase (MPO) activity analyses were then implemented to compare the microbiome and ileitis phenotype in SAMP with that of control ileitis-free AKR/J mice after Splenda supplementation. Results: Metagenomics indicated that SAMP mice have a gut microbial phenotype rich in Bacteroidetes, and experiments showed that Helicobacteraceae did not have an exacerbating effect on ileitis. Splenda did not increase the severity of (stereomicroscopic/histological) ileitis; however, biochemically, ileal MPO activity was increased in SAMP treated with Splenda compared with nonsupplemented mice (P < 0.022) and healthy AKR mice. Splenda promoted dysbiosis with expansion of Proteobacteria in all mice, and E. coli overgrowth with increased bacterial infiltration into the ileal lamina propria of SAMP mice. FISH showed increase malX gene-carrying bacterial clusters in the ilea of supplemented SAMP (but not AKR) mice. Conclusions: Splenda promoted gut Proteobacteria, dysbiosis, and biochemical MPO reactivity in a spontaneous model of (Bacteroidetes-rich) ileal CD. Our results indicate that although Splenda may promote parallel microbiome alterations in CD-prone and healthy hosts, this did not result in elevated MPO levels in healthy mice, only CD-prone mice. The consumption of sucralose/maltodextrin-containing foods might exacerbate MPO intestinal reactivity only in individuals with a pro-inflammatory predisposition, such as CD.


Assuntos
Doença de Crohn/patologia , Disbiose/fisiopatologia , Ileíte/patologia , Mucosa Intestinal/patologia , Sacarose/análogos & derivados , Edulcorantes/efeitos adversos , Animais , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/genética , Doença de Crohn/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Ileíte/metabolismo , Hibridização in Situ Fluorescente , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos AKR , Microbiota , Peroxidase/metabolismo , Proteobactérias/efeitos dos fármacos , Proteobactérias/genética , RNA Ribossômico 16S/genética , Sacarose/efeitos adversos
20.
J Immunol ; 200(6): 2174-2185, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29440355

RESUMO

Commensal bacteria are critical for physiological functions in the gut, and dysbiosis in the gut may cause diseases. In this article, we report that mice deficient in cathelin-related antimicrobial peptide (CRAMP) were defective in the development of colon mucosa and highly sensitive to dextran sulfate sodium (DSS)-elicited colitis, as well as azoxymethane-mediated carcinogenesis. Pretreatment of CRAMP-/- mice with antibiotics markedly reduced the severity of DSS-induced colitis, suggesting CRAMP as a limiting factor on dysbiosis in the colon. This was supported by observations that wild-type (WT) mice cohoused with CRAMP-/- mice became highly sensitive to DSS-induced colitis, and the composition of fecal microbiota was skewed by CRAMP deficiency. In particular, several bacterial species that are typically found in oral microbiota, such as Mogibacterium neglectum, Desulfovibrio piger, and Desulfomicrobium orale, were increased in feces of CRAMP-/- mice and were transferred to WT mice during cohousing. When littermates of CRAMP+/- parents were examined, the composition of the fecal microbiota of WT pups and heterozygous parents was similar. In contrast, although the difference in fecal microbiota between CRAMP-/- and WT pups was small early on after weaning and single mouse housing, there was an increasing divergence with prolonged single housing. These results indicate that CRAMP is critical in maintaining colon microbiota balance and supports mucosal homeostasis, anti-inflammatory responses, and protection from carcinogenesis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Colo/metabolismo , Colo/microbiologia , Microbioma Gastrointestinal/fisiologia , Homeostase/fisiologia , Microbiota/fisiologia , Animais , Colite/metabolismo , Colite/microbiologia , Modelos Animais de Doenças , Fezes/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/metabolismo , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA