Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Allergy ; 75(4): 882-891, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31750952

RESUMO

BACKGROUND: Transforming growth factor ß1 (TGFß1) is a cytokine that exerts immunosuppressive functions, as reflected by its ability to induce regulatory T (Treg) cell differentiation and inhibit Th1 and Th2 responses. Hence, peptides that mimic the active core domain of TGFß1 may be promising candidates for modulation of the allergic response. This study aimed to investigate a synthetic TGFß1 mimetic peptide (TGFß1-mim) for its ability to modulate the immune response during allergic sensitization to grass pollen allergens. METHODS: The in vitro action of TGFß1-mim was evaluated in human lung epithelial cells, Jurkat cells, and rat basophilic leukemia cells. The in vivo action was evaluated in a murine model of Phl p 5 allergic sensitization. Additionally, the Th2 modulatory response was evaluated in IL-4 reporter mice. RESULTS: In vitro, TGFß1-mim downregulated TNF-α production, IL-8 gene expression, and cytokine secretion, upregulated IL-10 secretion, and inhibited Phl p 5-induced basophil degranulation. During Phl p 5 sensitization in mice, TGFß1-mim downregulated IL-2, IL-4, IL-5, IL-13, and IFN-γ, upregulated IL-10, and induced Treg cell production. Furthermore, mice treated with TGFß1-mim had lower levels of IgE, IgG1, IgG2a and higher levels of IgA antibodies than control mice. In a reporter mouse, the mimetic inhibited Th2 polarization. CONCLUSION: The TGFß1-mim efficiently modulated various important events that exacerbate the allergic microenvironment, including the production of main cytokines that promote Th1 and Th2 differentiation, and the induction of allergen-specific regulatory T cells, highlighting its potential use in therapeutic approaches to modulate the immune response toward environmental allergens.


Assuntos
Alérgenos , Peptídeos , Fator de Crescimento Transformador beta1 , Animais , Biomimética , Imunoglobulina E , Camundongos , Peptídeos/farmacologia , Poaceae , Pólen/imunologia
2.
Nutrients ; 11(10)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618852

RESUMO

Food proteins may get nitrated by various exogenous or endogenous mechanisms. As individuals might get recurrently exposed to nitrated proteins via daily diet, we aimed to investigate the effect of repeatedly ingested nitrated food proteins on the subsequent immune response in non-allergic and allergic mice using the milk allergen beta-lactoglobulin (BLG) as model food protein in a mouse model. Evaluating the presence of nitrated proteins in food, we could detect 3-nitrotyrosine (3-NT) in extracts of different foods and in stomach content extracts of non-allergic mice under physiological conditions. Chemically nitrated BLG (BLGn) exhibited enhanced susceptibility to degradation in simulated gastric fluid experiments compared to untreated BLG (BLGu). Gavage of BLGn to non-allergic animals increased interferon-γ and interleukin-10 release of stimulated spleen cells and led to the formation of BLG-specific serum IgA. Allergic mice receiving three oral gavages of BLGn had higher levels of mouse mast cell protease-1 (mMCP-1) compared to allergic mice receiving BLGu. Regardless of the preceding immune status, non-allergic or allergic, repeatedly ingested nitrated food proteins seem to considerably influence the subsequent immune response.


Assuntos
Alérgenos/imunologia , Lactoglobulinas/imunologia , Hipersensibilidade a Leite/imunologia , Nitrocompostos/imunologia , Animais , Linhagem Celular Tumoral , Quimases/imunologia , Quimases/metabolismo , Modelos Animais de Doenças , Feminino , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Camundongos Endogâmicos BALB C , Hipersensibilidade a Leite/sangue , Estabilidade Proteica , Proteólise , Ratos , Baço/imunologia , Baço/metabolismo , Tirosina/análogos & derivados , Tirosina/imunologia
3.
Arch Toxicol ; 93(4): 871-885, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30838431

RESUMO

Engineered amorphous silica nanoparticles (nanosilica) are one of the most abundant nanomaterials and are widely used in industry. Furthermore, novel nanosilica materials are promising theranostic tools for biomedicine. However, hazardous effects of nanosilica especially after inhalation into the lung have been documented. Therefore, the safe development of nanosilica materials urgently requires predictive assays to monitor toxicity. Here, we further investigate the impact of the protein corona on the biological activity of two different types of nanosilica (colloidal and pyrogenic) in lung cells. As previously described, adsorption of serum proteins to the nanosilica surface suppresses cytotoxicity in macrophages and lung epithelial cells. As the increase of pro-inflammatory mediators is a hallmark of inflammation in the lung upon nanosilica exposure, we studied the potential coupling of the cytotoxic and pro-inflammatory response in A549 human lung epithelial cells and RAW264.7 mouse macrophages. Indeed, cytotoxicity precedes the onset of pro-inflammatory gene expression and cytokine release as exemplified for IL-8 in A549 cells and TNF-alpha in RAW264.7 macrophages after exposure to 0-100 µg/mL nanosilica in medium without serum. Formation of a protein corona not only inhibited cellular toxicity, but also the pro-inflammatory response. Of note, uptake of nanosilica into cells was negligible in the absence, but enhanced in the presence of a protein corona. Hence, the prevailing explanation that the protein corona simply interferes with cellular uptake thus preventing adverse effects needs to be revisited. In conclusion, for the reliable prediction of adverse effects of nanosilica in the lung, in vitro assays should be performed in media not complemented with complete serum. However, in case of different exposure routes, e.g., injection into the blood stream as intended for biomedicine, the protein corona prevents acute toxic actions of nanosilica.


Assuntos
Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas/toxicidade , Coroa de Proteína/metabolismo , Dióxido de Silício/toxicidade , Células A549 , Adsorção , Animais , Apoptose/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Nanopartículas/química , Tamanho da Partícula , Células RAW 264.7 , Dióxido de Silício/química , Propriedades de Superfície
4.
Environ Res ; 166: 91-99, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29883905

RESUMO

Benzene is a recognized human carcinogen; however, there are still some gaps in the knowledge regarding the mechanism of toxicity of this organic solvent and potential early biomarkers for the damage caused by it. In a previous study, our research group demonstrated that the adhesion molecules of the immune system (B7.1 and B7.2) could be potential biomarkers in the early detection of immunotoxicity caused by benzene exposure. Therefore, this study was developed to deepen the understanding regarding this important topic, aiming to contribute to the comprehension of the benzene toxicity mechanism mediated by B7.1 and B7.2 and its potential association with the risk of carcinogenicity. B7.1 and B7.2 protein expression in blood monocytes and B7.1 and B7.2 gene expression in PBMCs were evaluated. Additionally, complement C3 and C4 levels in serum were measured, as well as p53 gene expression in PBMCs. Seventy-four gas station workers (GSW group) and 71 non-occupationally exposed subjects (NEG) were evaluated. Our results demonstrated decreased levels of B7.1 and B7.2 protein and gene expression in the GSW group compared to the NEG (n = 71) (p < 0.01). Along the same lines, decreased levels of the complement system were observed in the GSW group (p < 0.01), demonstrating the impairment of this immune system pathway as well. Additionally, a reduction was observed in p53 gene expression in the GSA group (p < 0.01). These alterations were associated with both the benzene exposure biomarker evaluated, urinary trans, trans-muconic acid, and with exposure time (p < 0.05). Moreover, strong correlations were observed between the gene expression of p53 vs. B7.1 (r = 0.830; p < 0.001), p53 vs. B7.2 (r = 0.685; p < 0.001), and B7.1 vs. B7.2 (r = 0.702; p < 0.001). Taken together, these results demonstrate that the immune system co-stimulatory molecule pathway is affected by benzene exposure. Also, the decrease in p53 gene expression, even at low exposure levels, reinforces the carcinogenicity effect of benzene in this pathway. Therefore, our results suggest that the promotion of immune evasion together with a decrease in p53 gene expression may play an important role in the benzene toxicity mechanism. However, further and targeted studies are needed to confirm this proposition.


Assuntos
Antígeno B7-1/imunologia , Antígeno B7-2/imunologia , Benzeno/toxicidade , Neoplasias/imunologia , Exposição Ocupacional , Biomarcadores , Carcinógenos , Estudos de Casos e Controles , Complemento C3/imunologia , Complemento C4/imunologia , Humanos , Proteína Supressora de Tumor p53/genética
5.
J Nanobiotechnology ; 15(1): 11, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143572

RESUMO

BACKGROUND: Poly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce. METHODS: We conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells' proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits. RESULTS: Cell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells' proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts. CONCLUSIONS: These data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover, the pathways of PLA-NP internalization we detected could contribute to the improvement of selective uptake strategies.


Assuntos
Materiais Biocompatíveis/química , Cavéolas/metabolismo , Células Epiteliais/efeitos dos fármacos , Microdomínios da Membrana , Nanopartículas/química , Poliésteres/química , Células A549 , Sobrevivência Celular , Clatrina/química , Sistemas de Liberação de Medicamentos , Células Epiteliais/citologia , Humanos , Interleucina-12/metabolismo , MicroRNAs/metabolismo , Tamanho da Partícula , Pinocitose , Proteoma , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Arch Toxicol ; 91(6): 2315-2330, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27942788

RESUMO

The rapid development of nanotechnologies and increased production and use of nanomaterials raise concerns about their potential toxic effects for human health and environment. To evaluate the biological effects of nanomaterials, a set of reliable and reproducible methods and development of standard operating procedures (SOPs) is required. In the framework of the European FP7 NanoValid project, three different cell viability assays (MTS, ATP content, and caspase-3/7 activity) with different readouts (absorbance, luminescence and fluorescence) and two immune assays (ELISA of pro-inflammatory cytokines IL1-ß and TNF-α) were evaluated by inter-laboratory comparison. The aim was to determine the suitability and reliability of these assays for nanosafety assessment. Studies on silver and copper oxide nanoparticles (NPs) were performed, and SOPs for particle handling, cell culture, and in vitro assays were established or adapted. These SOPs give precise descriptions of assay procedures, cell culture/seeding conditions, NPs/positive control preparation and dilutions, experimental well plate preparation, and evaluation of NPs interference. The following conclusions can be highlighted from the pan-European inter-laboratory studies: Testing of NPs interference with the toxicity assays should always be conducted. Interference tests should be designed as close as possible to the cell exposure conditions. ATP and MTS assays gave consistent toxicity results with low inter-laboratory variability using Ag and CuO NPs and different cell lines and therefore, could be recommended for further validation and standardization. High inter-laboratory variability was observed for Caspase 3/7 assay and ELISA for IL1-ß and TNF-α measurements.


Assuntos
Cobre/toxicidade , Citocinas/metabolismo , Laboratórios/normas , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Testes de Toxicidade/normas , Bioensaio/métodos , Bioensaio/normas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Europa (Continente) , Humanos , Nanopartículas Metálicas/química , Tamanho da Partícula , Reprodutibilidade dos Testes , Prata/química , Propriedades de Superfície , Testes de Toxicidade/métodos
7.
Part Fibre Toxicol ; 13(1): 49, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27609141

RESUMO

BACKGROUND: The rapidly increasing number of engineered nanoparticles (NPs), and products containing NPs, raises concerns for human exposure and safety. With this increasing, and ever changing, catalogue of NPs it is becoming more difficult to adequately assess the toxic potential of new materials in a timely fashion. It is therefore important to develop methods which can provide high-throughput screening of biological responses. The use of omics technologies, including metabolomics, can play a vital role in this process by providing relatively fast, comprehensive, and cost-effective assessment of cellular responses. These techniques thus provide the opportunity to identify specific toxicity pathways and to generate hypotheses on how to reduce or abolish toxicity. RESULTS: We have used untargeted metabolome analysis to determine differentially expressed metabolites in human lung epithelial cells (A549) exposed to copper oxide nanoparticles (CuO NPs). Toxicity hypotheses were then generated based on the affected pathways, and critically tested using more conventional biochemical and cellular assays. CuO NPs induced regulation of metabolites involved in oxidative stress, hypertonic stress, and apoptosis. The involvement of oxidative stress was clarified more easily than apoptosis, which involved control experiments to confirm specific metabolites that could be used as standard markers for apoptosis; based on this we tentatively propose methylnicotinamide as a generic metabolic marker for apoptosis. CONCLUSIONS: Our findings are well aligned with the current literature on CuO NP toxicity. We thus believe that untargeted metabolomics profiling is a suitable tool for NP toxicity screening and hypothesis generation.


Assuntos
Metabolômica , Nanopartículas Metálicas/toxicidade , Apoptose , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Glutationa Peroxidase/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Interleucina-8/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Estresse Oxidativo , Glutationa Peroxidase GPX1
8.
Part Fibre Toxicol ; 13: 3, 2016 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-26772182

RESUMO

BACKGROUND: Engineered nanomaterials (ENMs) interact with different biomolecules as soon as they are in contact, resulting in the formation of a biomolecule 'corona'. Hence, the 'corona' defines the biological identity of the ENMs and could affect the response of the immune system to ENM exposure. With up to 40 % of the world population suffering from type I allergy, a possible modulation of allergen effects by binding to ENMs is highly relevant with respect to work place and consumer safety. Therefore, the aim of this present study was to gain an insight into the interactions of gold nanoparticles with different seasonally and perennially occurring outdoor and indoor allergens. METHODS: Gold nanoparticles (AuNPs) were conjugated with the major allergens of birch pollen (Bet v 1), timothy grass pollen (Phl p 5) and house dust mite (Der p 1). The AuNP-allergen conjugates were characterized by means of TEM negative staining, dynamic light scattering (DLS), z-potential measurements and hyperspectral imaging. Furthermore, 3D models were constructed, based on the characterization data, to visualize the interaction between the allergens and the AuNPs surface. Differences in the activation of human basophil cells derived from birch/grass pollen- and house dust mite-allergic patients in response to free allergen and AuNP-allergen conjugates were determined using the basophil activation assay (BAT). Potential allergen corona replacement during BAT was controlled for using Western blotting. The protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was assessed, by an enzymatic activity assay and a cellular assay pertaining to lung type II alveolar epithelial cell tight junction integrity. RESULTS: The formation of a stable corona was found for all three allergens used. Our data suggest, that depending on the allergen, different effects are observed after binding to ENMs, including enhanced allergic responses against Der p 1 and also, for some patients, against Bet v 1. Moreover elevated protease activity of AuNP-Der p 1 conjugates compared to free Der p 1 was found. CONCLUSION: In summary, this study presents that conjugation of allergens to ENMs can modulate the human allergic response, and that protease activity can be increased. Graphical Abstract Cross-linking of IgE receptors and degranulation of human basophils due to epitope alignment of nanoparticle-coated allergens.


Assuntos
Alérgenos/imunologia , Células Epiteliais Alveolares/imunologia , Antígenos de Dermatophagoides/imunologia , Antígenos de Plantas/imunologia , Proteínas de Artrópodes/imunologia , Basófilos/imunologia , Cisteína Endopeptidases/imunologia , Ouro/imunologia , Proteínas de Plantas/imunologia , Coroa de Proteína/imunologia , Alérgenos/metabolismo , Células Epiteliais Alveolares/metabolismo , Antígenos de Dermatophagoides/metabolismo , Antígenos de Plantas/metabolismo , Proteínas de Artrópodes/metabolismo , Basófilos/metabolismo , Linhagem Celular Tumoral , Cisteína Endopeptidases/metabolismo , Ouro/metabolismo , Humanos , Nanopartículas Metálicas , Nanomedicina/métodos , Peptídeo Hidrolases/metabolismo , Permeabilidade , Proteínas de Plantas/metabolismo , Ligação Proteica , Coroa de Proteína/metabolismo , Junções Íntimas/imunologia , Junções Íntimas/metabolismo , Fatores de Tempo
9.
Part Fibre Toxicol ; 12: 29, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26415698

RESUMO

BACKGROUND: Stably transfected lung epithelial reporter cell lines pose an advantageous alternative to replace complex experimental techniques to monitor the pro-inflammatory response following nanoparticle (NP) exposure. Previously, reporter cell lines have been used under submerged culture conditions, however, their potential usefulness in combination with air-liquid interface (ALI) exposures is currently unknown. Therefore, the aim of the present study was to compare a panel of interleukin-8 promoter (pIL8)-reporter cell lines (i.e. green or red fluorescent protein (GFP, RFP), and luciferase (Luc)), originating from A549 lung epithelial type II-like cells cells, following NPs exposure under both submerged and ALI conditions. METHODS: All cell lines were exposed to zinc oxide (ZnO) NPs at 0.6 and 6.2 µg/cm(2) for 3 and 16 hours under both submerged and ALI conditions. Following physicochemical characterization, the cytotoxic profile of the ZnO-NPs was determined for each exposure scenario. Expression of IL-8 from all cell types was analyzed at the promoter level and compared to the mRNA (qRT-PCR) and protein level (ELISA). RESULTS: In summary, each reporter cell line detected acute pro-inflammatory effects following ZnO exposure under each condition tested. The pIL8-Luc cell line was the most sensitive in terms of reporter signal strength and onset velocity following TNF-α treatment. Both pIL8-GFP and pIL8-RFP also showed a marked signal induction in response to TNF-α, although only after 16 hrs. In terms of ZnO-NP-induced cytotoxicity pIL8-RFP cells were the most affected, whilst the pIL8-Luc were found the least responsive. CONCLUSIONS: In conclusion, the use of fluorescence-based reporter cell lines can provide a useful tool in screening the pro-inflammatory response following NP exposure in both submerged and ALI cell cultures.


Assuntos
Genes Reporter , Inflamação/induzido quimicamente , Interleucina-8/genética , Pulmão/metabolismo , Nanopartículas Metálicas/toxicidade , Óxido de Zinco/toxicidade , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Pulmão/citologia
10.
Part Fibre Toxicol ; 12: 25, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26204901

RESUMO

BACKGROUND: The main goal of this research was to study the interactions of a fully characterized set of silver nanomaterials (Ag ENMs) with cells in vitro, according to the standards of Good Laboratory Practices (GLP), to assure the quality of nanotoxicology research. We were interested in whether Ag ENMs synthesized by the same method, with the same size distribution, shape and specific surface area, but with different charges and surface compositions could give different biological responses. METHODS: A range of methods and toxicity endpoints were applied to study the impacts of interaction of the Ag ENMs with TK6 cells. As tests of viability, relative growth activity and trypan blue exclusion were applied. Genotoxicity was evaluated by the alkaline comet assay for detection of strand breaks and oxidized purines. The mutagenic potential of Ag ENMs was investigated with the in vitro HPRT gene mutation test on V79-4 cells according to the OECD protocol. Ag ENM agglomeration, dissolution as well as uptake and distribution within the cells were investigated as crucial aspects of Ag ENM toxicity. Ag ENM stabilizers were included in addition to positive and negative controls. RESULTS: Different cytotoxic effects were observed including membrane damage, cell cycle arrest and cell death. Ag ENMs also induced various kinds of DNA damage including strand breaks and DNA oxidation, and caused gene mutation. We found that positive Ag ENMs had greater impact on cyto- and genotoxicity than did Ag ENMs with neutral or negative charge, assumed to be related to their greater uptake into cells and to their presence in the nucleus and mitochondria, implying that Ag ENMs might induce toxicity by both direct and indirect mechanisms. CONCLUSION: We showed that Ag ENMs could be cytotoxic, genotoxic and mutagenic. Our experiments with the HPRT gene mutation assay demonstrated that surface chemical composition plays a significant role in Ag ENM toxicity.


Assuntos
Dano ao DNA , Hipoxantina Fosforribosiltransferase/genética , Nanopartículas Metálicas , Mutação , Compostos de Prata/toxicidade , Animais , Transporte Biológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/patologia , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Cricetulus , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Humanos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Medição de Risco , Compostos de Prata/síntese química , Compostos de Prata/metabolismo , Propriedades de Superfície
11.
Environ Sci Technol ; 49(14): 8721-30, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26083946

RESUMO

Air pollution is associated with increased risk of cardiovascular and pulmonary diseases, but conventional air quality monitoring gives no information about biological consequences. Exposing human lung cells at the air-liquid interface (ALI) to ambient aerosol could help identify acute biological responses. This study investigated electrode-assisted deposition of diesel exhaust aerosol (DEA) on human lung epithelial cells (A549) in a prototype exposure chamber. A549 cells were exposed to DEA at the ALI and under submerged conditions in different electrostatic fields (EFs) and were assessed for cell viability, membrane integrity, and IL-8 secretion. Qualitative differences of the DEA and its deposition under different EFs were characterized using scanning mobility particle sizer (SMPS) measurements, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Upon exposure to DEA only, cell viability decreased and membrane impairment increased for cells at the ALI; submerged cells were unaffected. These responses were enhanced upon application of an EF, as was DEA deposition. No adverse effects were observed for filtered DEA or air only, confirming particle-induced responses. The prototype exposure chamber proved suitable for testing DEA-induced biological responses of cells at the ALI using electrode-assisted deposition and may be useful for analysis of other air pollutants.


Assuntos
Aerossóis/toxicidade , Poluentes Atmosféricos/toxicidade , Células Epiteliais/efeitos dos fármacos , Pulmão/patologia , Eletricidade Estática , Emissões de Veículos/análise , Poluição do Ar/análise , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Pulmão/efeitos dos fármacos , Microscopia Eletrônica de Transmissão
12.
Environ Res ; 137: 349-56, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25601738

RESUMO

INTRODUCTION: Elucidation of effective biomarkers may provide tools for the early detection of biological alterations caused by benzene exposure and may contribute to the reduction of occupational diseases. This study aimed to assess early alterations on hematological and immunological systems of workers exposed to benzene. METHODS: Sixty gasoline station attendants (GSA group) and 28 control subjects were evaluated. Environmental and biological monitoring of benzene exposure was performed in blood and urine. The potential effect biomarkers evaluated were δ-aminolevulinate dehydratase (ALA-D) activity, CD80 and CD86 expression in lymphocytes and monocytes, and serum interleukin-8 (IL-8). The influence of confounding factors and toluene co-exposure were considered. RESULTS: Although exposures were below ACGIH (American Conference of Governmental Industrial Hygienists) limits, reduced ALA-D activity, decreased CD80 and CD86 expression in monocytes and increased IL-8 levels were found in the GSA group compared to the control subjects. Furthermore, according to multiple linear regression analysis, benzene exposure was associated to a decrease in CD80 and CD86 expression in monocytes. CONCLUSIONS: These findings suggest, for the first time, a potential effect of benzene exposure on ALA-D activity, CD80 and CD86 expression, IL-8 levels, which could be suggested as potential markers for the early detection of benzene-induced alterations.


Assuntos
Benzeno/toxicidade , Poluentes Ambientais/toxicidade , Exposição Ocupacional , Adulto , Benzeno/metabolismo , Biomarcadores/sangue , Biomarcadores/urina , Análise Química do Sangue , Brasil , Monitoramento Ambiental , Poluentes Ambientais/sangue , Poluentes Ambientais/urina , Citometria de Fluxo , Testes Hematológicos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Masculino
13.
J Nanobiotechnology ; 13: 1, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25592092

RESUMO

BACKGROUND: Nanoparticle (NPs) functionalization has been shown to affect their cellular toxicity. To study this, differently functionalized silver (Ag) and gold (Au) NPs were synthesised, characterised and tested using lung epithelial cell systems. METHODS: Monodispersed Ag and Au NPs with a size range of 7 to 10 nm were coated with either sodium citrate or chitosan resulting in surface charges from -50 mV to +70 mV. NP-induced cytotoxicity and oxidative stress were determined using A549 cells, BEAS-2B cells and primary lung epithelial cells (NHBE cells). TEER measurements and immunofluorescence staining of tight junctions were performed to test the growth characteristics of the cells. Cytotoxicity was measured by means of the CellTiter-Blue ® and the lactate dehydrogenase assay and cellular and cell-free reactive oxygen species (ROS) production was measured using the DCFH-DA assay. RESULTS: Different growth characteristics were shown in the three cell types used. A549 cells grew into a confluent mono-layer, BEAS-2B cells grew into a multilayer and NHBE cells did not form a confluent layer. A549 cells were least susceptible towards NPs, irrespective of the NP functionalization. Cytotoxicity in BEAS-2B cells increased when exposed to high positive charged (+65-75 mV) Au NPs. The greatest cytotoxicity was observed in NHBE cells, where both Ag and Au NPs with a charge above +40 mV induced cytotoxicity. ROS production was most prominent in A549 cells where Au NPs (+65-75 mV) induced the highest amount of ROS. In addition, cell-free ROS measurements showed a significant increase in ROS production with an increase in chitosan coating. CONCLUSIONS: Chitosan functionalization of NPs, with resultant high surface charges plays an important role in NP-toxicity. Au NPs, which have been shown to be inert and often non-cytotoxic, can become toxic upon coating with certain charged molecules. Notably, these effects are dependent on the core material of the particle, the cell type used for testing and the growth characteristics of these cell culture model systems.


Assuntos
Células Epiteliais/efeitos dos fármacos , Ouro/farmacologia , Pulmão/citologia , Nanopartículas Metálicas , Oxidantes/farmacologia , Prata/farmacologia , Brônquios/citologia , Linhagem Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistema Livre de Células , Células Cultivadas , Quitosana/química , Meios de Cultura/química , Meios de Cultura/farmacologia , Células Epiteliais/metabolismo , Humanos , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/química , Oxidantes/química , Espécies Reativas de Oxigênio/metabolismo
14.
Part Fibre Toxicol ; 11: 65, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25466209

RESUMO

BACKGROUND: Nanosilver is one of the most commonly used engineered nanomaterials (ENMs). In our study we focused on assessing the size-dependence of the toxicity of nanosilver (Ag ENMs), utilising materials of three sizes (50, 80 and 200 nm) synthesized by the same method, with the same chemical composition, charge and coating. METHODS: Uptake and localisation (by Transmission Electron Microscopy), cell proliferation (Relative growth activity) and cytotoxic effects (Plating efficiency), inflammatory response (induction of IL-8 and MCP-1 by Enzyme linked immune sorbent assay), DNA damage (strand breaks and oxidised DNA lesions by the Comet assay) were all assessed in human lung carcinoma epithelial cells (A549), and the mutagenic potential of ENMs (Mammalian hprt gene mutation test) was assessed in V79-4 cells as per the OECD protocol. Detailed physico-chemical characterization of the ENMs was performed in water and in biological media as a prerequisite to assessment of their impacts on cells. To study the relationship between the surface area of the ENMs and the number of ENMs with the biological response observed, Ag ENMs concentrations were recalculated from µg/cm2 to ENMs cm2/cm2 and ENMs/cm2. RESULTS: Studied Ag ENMs are cytotoxic and cytostatic, and induced strand breaks, DNA oxidation, inflammation and gene mutations. Results expressed in mass unit [µg/cm2] suggested that the toxicity of Ag ENMs is size dependent with 50 nm being most toxic. However, re-calculation of Ag ENMs concentrations from mass unit to surface area and number of ENMs per cm2 highlighted that 200 nm Ag ENMs, are the most toxic. Results from hprt gene mutation assay showed that Ag ENMs 200 nm are the most mutagenic irrespective of the concentration unit expressed. CONCLUSION: We found that the toxicity of Ag ENMs is not always size dependent. Strong cytotoxic and genotoxic effects were observed in cells exposed to Ag ENMs 50 nm, but Ag ENMs 200 nm had the most mutagenic potential. Additionally, we showed that expression of concentrations of ENMs in mass units is not representative. Number of ENMs or surface area of ENMs (per cm2) seem more precise units with which to compare the toxicity of different ENMs.


Assuntos
Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Cricetinae , Dano ao DNA , Relação Dose-Resposta a Droga , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-8/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Nanopartículas Metálicas/química , Mutação , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Medição de Risco , Prata/química , Prata/metabolismo , Propriedades de Superfície , Fatores de Tempo
15.
J Proteome Res ; 13(3): 1570-7, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24517313

RESUMO

Nitration of the major birch pollen allergen Bet v 1 alters the immune responses toward this protein, but the underlying chemical mechanisms are not yet understood. Here we address the efficiency and site-selectivity of the nitration reaction of recombinant protein samples of Bet v 1.0101 with different nitrating agents relevant for laboratory investigations (tetranitromethane, TNM), for physiological processes (peroxynitrite, ONOO(-)), and for the health effects of environmental pollutants (nitrogen dioxide and ozone, O3/NO2). We determined the total tyrosine nitration degrees (ND) and the NDs of individual tyrosine residues (NDY). High-performance liquid chromatography coupled to diode array detection and HPLC coupled to high-resolution mass spectrometry analysis of intact proteins, HPLC coupled to tandem mass spectrometry analysis of tryptic peptides, and amino acid analysis of hydrolyzed samples were performed. The preferred reaction sites were tyrosine residues at the following positions in the polypeptide chain: Y83 and Y81 for TNM, Y150 for ONOO(-), and Y83 and Y158 for O3/NO2. The tyrosine residues Y83 and Y81 are located in a hydrophobic cavity, while Y150 and Y158 are located in solvent-accessible and flexible structures of the C-terminal region. The heterogeneous reaction with O3/NO2 was found to be strongly dependent on the phase state of the protein. Nitration rates were about one order of magnitude higher for aqueous protein solutions (∼20% per day) than for protein filter samples (∼2% per day). Overall, our findings show that the kinetics and site-selectivity of nitration strongly depend on the nitrating agent and reaction conditions, which may also affect the biological function and adverse health effects of the nitrated protein.


Assuntos
Antígenos de Plantas/química , Peptídeos/análise , Tirosina/química , Sequência de Aminoácidos , Antígenos de Plantas/genética , Betula/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Dióxido de Nitrogênio/química , Ozônio/química , Ácido Peroxinitroso/química , Pólen/química , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Tetranitrometano/química
16.
J Biol Chem ; 289(1): 540-51, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24253036

RESUMO

Many allergens share several biophysical characteristics, including the capability to undergo oligomerization. The dimerization mechanism in Bet v 1 and its allergenic properties are so far poorly understood. Here, we report crystal structures of dimeric Bet v 1, revealing a noncanonical incorporation of cysteine at position 5 instead of genetically encoded tyrosine. Cysteine polysulfide bridging stabilized different dimeric assemblies, depending on the polysulfide linker length. These dimers represent quaternary arrangements that are frequently observed in related proteins, reflecting their prevalence in unmodified Bet v 1. These conclusions were corroborated by characteristic immunologic properties of monomeric and dimeric allergen variants. Hereby, residue 5 could be identified as an allergenic hot spot in Bet v 1. The presented results refine fundamental principles in protein chemistry and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity.


Assuntos
Antígenos de Plantas/química , Betula/química , Proteínas de Plantas/química , Multimerização Proteica , Antígenos de Plantas/genética , Antígenos de Plantas/imunologia , Betula/genética , Betula/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Estabilidade Proteica , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
17.
Toxicol In Vitro ; 27(6): 1746-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23684770

RESUMO

Diesel engine emission particle filters are often placed at exhaust outlets to remove particles from the exhaust. The use of filters results in the exposure to a reduced number of nanometer-sized particles, which might be more harmful than the exposure to a larger number of micrometer-sized particles. An in vitro exposure system was established to expose human alveolar epithelial cells to freshly generated exhaust. Computer simulations were used to determine the optimal flow characteristics and ensure equal exposure conditions for each well of a 6-well plate. A selective particle size sampler was used to continuously deliver diesel soot particles with different particle size distributions to cells in culture. To determine, whether the system could be used for cellular assays, alterations in cytokine production and cell viability of human alveolar A549 cells were determined after 3h on-line exposure followed by a 21-h conventional incubation period. Data indicated that complete diesel engine emission slightly affected pre-stimulated cells, but naive cells were not affected. The fractions containing large or small particles never affected the cells. The experimental set-up allowed a reliable exposure of the cells to the complete exhaust fraction or to the fractions containing either large or small diesel engine emission particles.


Assuntos
Sistemas On-Line , Testes de Toxicidade/instrumentação , Emissões de Veículos/toxicidade , Adenilato Quinase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Hidrodinâmica , Tamanho da Partícula , Testes de Toxicidade/métodos
18.
Cell Physiol Biochem ; 32(7): 238-48, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24429829

RESUMO

BACKGROUND: Pendrin, an anion exchanger associated with the inner ear, thyroid and kidney, plays a significant role in respiratory tissues and diseases, where its expression is increased following IL-4 and IL-13 exposure. The mechanism leading to increased pendrin expression is in part due to binding of STAT6 to a consensus sequence (N4 GAS motif) located in the pendrin promoter. As retrospective analyses of the 5' upstream sequence of the human pendrin promoter revealed an additional N4 GAS motif (1660 base pairs upstream of the one previously identified), we set out to define its contribution to IL-4 stimulated changes in pendrin promoter activity. METHODS AND RESULTS: Electrophoretic mobility shift assays showed that STAT6 bound to oligonucleotides corresponding to both N4 GAS motifs in vitro, while dual luciferase promoter assays revealed that only one of the N4 GAS motifs was necessary for IL-4 -stimulated increases in pendrin promoter activity in living cells. We then examined the ability of STAT6 to bind each of the N4 GAS motifs in vivo with a site-specific ChIP assay, the results of which showed that STAT6 interacted with only the N4 GAS motif that was functionally implicated in increasing the activity of the pendrin promoter following IL-4 treatment. CONCLUSIONS: Of the two N4 GAS motifs located in the human pendrin promoter region analyzed in this study (nucleotides -3906 to +7), only the one located nearest to the first coding ATG participates in IL-4 stimulated increases in promoter activity.


Assuntos
Proteínas de Membrana Transportadoras/genética , Motivos de Nucleotídeos/genética , Regiões Promotoras Genéticas , Fator de Transcrição STAT6/genética , Sítios de Ligação , Humanos , Interleucina-13/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/química , Ligação Proteica , Fator de Transcrição STAT6/química , Transportadores de Sulfato
19.
PLoS One ; 7(2): e31483, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348091

RESUMO

Nitration of pollen derived allergens can occur by NO(2) and ozone in polluted air and it has already been shown that nitrated major birch (Betula verrucosa) pollen allergen Bet v 1.0101 (Bet v 1) exhibits an increased potency to trigger an immune response. However, the mechanisms by which nitration might contribute to the induction of allergy are still unknown. In this study, we assessed the effect of chemically induced nitration of Bet v 1 on the generation of HLA-DR associated peptides. Human dendritic cells were loaded with unmodified Bet v 1 or nitrated Bet v 1, and the naturally processed HLA-DR associated peptides were subsequently identified by liquid chromatography-mass spectrometry. Nitration of Bet v 1 resulted in enhanced presentation of allergen-derived HLA-DR-associated peptides. Both the copy number of Bet v 1 derived peptides as well as the number of nested clusters was increased. Our study shows that nitration of Bet v 1 alters antigen processing and presentation via HLA-DR, by enhancing both the quality and the quantity of the Bet v 1-specific peptide repertoire. These findings indicate that air pollution can contribute to allergic diseases and might also shed light on the analogous events concerning the nitration of self-proteins.


Assuntos
Alérgenos/química , Apresentação de Antígeno/imunologia , Antígenos de Plantas/metabolismo , Células Dendríticas/imunologia , Antígenos HLA-DR/imunologia , Nitratos , Poluição do Ar/efeitos adversos , Alérgenos/imunologia , Alérgenos/metabolismo , Betula , Humanos , Hipersensibilidade/etiologia , Nitratos/metabolismo , Peptídeos , Pólen/imunologia
20.
Nanotoxicology ; 6(1): 22-35, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21332300

RESUMO

Abstract Nickel, zinc, and copper oxide nanoparticles (NiONP, ZnONP, and CuONP) and their aqueous extracts (AEs) were applied to A549 lung epithelial cells to determine the cytotoxicity, IL-8 production, and activation of transcription factors. Nanoparticles (NPs) and their AEs were also instilled into rat lungs to evaluate acute and chronic inflammatory effects. In vitro AEs had specific effects; for example NiOAE had no effect and ZnOAE affected all parameters measured. NPs themselves all had cytotoxic effects but only ZnONP and CuONP impacted pro-inflammatory endpoints. The inflammatory cells in the BAL were also different from AEs and NPs with ZnONP and CuONP recruiting eosinophils and neutrophils whilst ZnOAE and CuOAE elicited only mild neutrophilic inflammation that had resolved by four weeks. NiONP recruited neutrophils only whilst NiOAE did not cause any inflammation. Understanding differences in the toxic role of the ionic components of metal oxide NPs will contribute to full hazard identification and characterisation.


Assuntos
Quimiotaxia de Leucócito/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Óxidos/farmacologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Bovinos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/toxicidade , Eosinófilos/metabolismo , Eosinófilos/patologia , Humanos , Interleucina-8/metabolismo , Intubação Intratraqueal , Íons , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Níquel/toxicidade , Ratos , Fator de Transcrição AP-1/metabolismo , Óxido de Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA