Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 723, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080534

RESUMO

BACKGROUND: 6 - 4 photoproducts are the second most common UV-induced DNA lesions after cyclobutane pyrimidine dimers. In plants, they are mainly repaired by photolyases in a process called photoreactivation. While pyrimidine dimers can be deleterious, leading to mutagenesis or even cell death, 6 - 4 photoproducts can activate specific signaling pathways. Therefore, their removal is particularly important, especially for plants exposed to high UV intensities due to their sessile nature. Although photoreactivation in nuclear DNA is well-known, its role in plant organelles remains unclear. In this paper we analyzed the activity and localization of GFP-tagged AtUVR3, the 6 - 4 photoproduct specific photolyase. RESULTS: Using transgenic Arabidopsis with different expression levels of AtUVR3, we confirmed a positive trend between these levels and the rate of 6 - 4 photoproduct removal under blue light. Measurements of 6 - 4 photoproduct levels in chloroplast and nuclear DNA of wild type, photolyase mutants, and transgenic plants overexpressing AtUVR3 showed that the photoreactivation is the main repair pathway responsible for the removal of these lesions in both organelles. The GFP-tagged AtUVR3 was predominantly located in nuclei with a small fraction present in chloroplasts and mitochondria of transgenic Arabidopsis thaliana and Nicotiana tabacum lines. In chloroplasts, this photolyase co-localized with the nucleoid marked by plastid envelope DNA binding protein. CONCLUSIONS: Photolyases are mainly localized in plant nuclei, with only a small fraction present in chloroplasts and mitochondria. Despite this unbalanced distribution, photoreactivation is the primary mechanism responsible for the removal of 6 - 4 photoproducts from nuclear and chloroplast DNA in adult leaves. The amount of the AtUVR3 photolyase is the limiting factor influencing the photoreactivation rate of 6 - 4 photoproducts. The efficient photoreactivation of 6 - 4 photoproducts in 35S: AtUVR3-GFP Arabidopsis and Nicotiana tabacum is a promising starting point to evaluate whether transgenic crops overproducing this photolyase are more tolerant to high UV irradiation and how they respond to other abiotic and biotic stresses under field conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Núcleo Celular , Reparo do DNA , Desoxirribodipirimidina Fotoliase , Plantas Geneticamente Modificadas , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Desoxirribodipirimidina Fotoliase/metabolismo , Desoxirribodipirimidina Fotoliase/genética , Raios Ultravioleta , DNA de Plantas/metabolismo , DNA de Plantas/genética , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/genética , DNA de Cloroplastos/genética , DNA de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Dano ao DNA
2.
Phys Chem Chem Phys ; 17(38): 25297-308, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26355649

RESUMO

Here, comparative electron spin-lattice relaxation studies of the 2Fe-2S iron-sulphur (Fe-S) cluster embedded in a large membrane protein complex - cytochrome bc1 - are reported. Structural modifications of the local environment alone (mutations S158A and Y160W removing specific H bonds between Fe-S and amino acid side chains) or in combination with changes in global protein conformation (mutations/inhibitors changing the position of the Fe-S binding domain within the protein complex) resulted in different redox potentials as well as g-, g-strain and the relaxation rates (T1(-1)) for the Fe-S cluster. The relaxation rates for T < 25 K were measured directly by inversion recovery, while for T > 60 K they were deduced from simulation of continuous wave EPR spectra of the cluster using a model that included anisotropy of Lorentzian broadening. In all cases, the relaxation rate involved contributions from direct, second-order Raman and Orbach processes, each dominating over different temperature ranges. The analysis of T1(-1) (T) over the range 5-120 K yielded the values of the Orbach energy (EOrb), Debye temperature θD and Raman process efficiency CRam for each variant of the protein. As the Orbach energy was generally higher for mutants S158A and Y160W, compared to wild-type protein (WT), it is suggested that H bond removal influences the geometry leading to increased strength of antiferromagnetic coupling between two Fe ions of the cluster. While θD was similar for all variants (∼107 K), the efficiency of the Raman process generally depends on the spin-orbit coupling that is lower for S158A and Y160W mutants, when compared to the WT. However, in several cases CRam did not only correlate with spin-orbit coupling but was also influenced by other factors - possibly the modification of protein rigidity and therefore the vibrational modes around the Fe-S cluster that change upon the movement of the iron-sulphur head domain.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/química , Ferro/química , Enxofre/química , Espectroscopia de Ressonância de Spin Eletrônica , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/metabolismo , Ligação de Hidrogênio , Mutação , Rhodobacter capsulatus/metabolismo , Análise Espectral Raman , Temperatura
3.
Biochemistry ; 48(24): 5708-20, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19415898

RESUMO

During the operation of cytochrome bc(1), a key enzyme of biological energy conversion, the iron-sulfur head domain of one of the subunits of the catalytic core undergoes a large-scale movement from the catalytic quinone oxidation Q(o) site to cytochrome c(1). This changes a distance between the two iron-two sulfur (FeS) cluster and other cofactors of the redox chains. Although the role and the mechanism of this movement have been intensely studied, they both remain poorly understood, partly because the movement itself is not easily traceable experimentally. Here, we take advantage of magnetic interactions between the reduced FeS cluster and oxidized heme b(L) to use dipolar enhancement of phase relaxation of the FeS cluster as a spectroscopic parameter which with a unique clarity and specificity senses changes in the distance between those two cofactors. The dipolar relaxation curves measured by EPR at Q-band in a glass state of frozen solution (i.e., under the conditions trapping a dynamic distribution of FeS positions that existed in a liquid phase) of isolated cytochrome bc(1) were compared with the curves calculated for the FeS cluster occupying distinct positions in various crystals of cytochrome bc(1). This comparison revealed the existence of a broad distribution of the FeS positions in noninhibited cytochrome bc(1) and demonstrated that the average equilibrium position is modifiable by inhibitors or mutations. To explain the results, we assume that changes in the equilibrium distribution of the FeS positions are the result of modifications of the orienting potential gradient in which the diffusion of the FeS head domain takes place. The measured changes in the phase relaxation enhancement provide the first direct experimental description of changes in the strength of dipolar coupling between the FeS cluster and heme b(L).


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/química , Heme/química , Ferro/química , Enxofre/química , Sítios de Ligação , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Ferro/metabolismo , Modelos Moleculares , Oxirredução , Rhodobacter capsulatus/metabolismo , Enxofre/metabolismo
4.
Eur Biophys J ; 37(4): 483-93, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18049817

RESUMO

Sensitivity of the electron paramagnetic resonance (CW EPR) to molecular tumbling provides potential means for studying processes of molecular association. It uses spin-labeled macromolecules, whose CW EPR spectra may change upon binding to other macromolecules. When a spin-labeled molecule is mixed with its liganding partner, the EPR spectrum constitutes a linear combination of spectra of the bound and unbound ligand (as seen in our example of spin-labeled cytochrome c(2) interacting with cytochrome bc(1) complex). In principle, the fraction of each state can be extracted by the numerical decomposition of the spectrum; however, the accuracy of such decomposition may often be compromised by the lack of the spectrum of the fully bound ligand, imposed by the equilibrium nature of molecular association. To understand how this may affect the final estimation of the binding parameters, such as stoichiometry and affinity of the binding, a series of virtual titration experiments was conducted. Our non-linear regression analysis considered a case in which only a single class of binding sites exists, and a case in which classes of both specific and non-specific binding sites co-exist. The results indicate that in both models, the error due to the unknown admixture of the unbound ligand component in the EPR spectrum causes an overestimation of the bound fraction leading to the bias in the dissociation constant. At the same time, the stoichiometry of the binding remains relatively unaffected, which overall makes the decomposition of the EPR spectrum an attractive method for studying protein-protein interactions in equilibrium. Our theoretical treatment appears to be valid for any spectroscopic techniques dealing with overlapping spectra of free and bound component.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Sítios de Ligação , Cisteína/química , Citocromos c2/metabolismo , Cinética , Ligantes , Substâncias Macromoleculares , Modelos Químicos , Modelos Teóricos , Ligação Proteica , Mapeamento de Interação de Proteínas , Análise de Regressão , Reprodutibilidade dos Testes , Rhodobacter capsulatus/metabolismo , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA