Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 103(10): 4742-4754, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764833

RESUMO

Minor millet grains are the abode of healthy constituents of human concern that contribute to healthy longevity. Additionally, they are excellent in nutritional value including macronutrients namely, protein (7-13%), carbohydrates (60-70%), fat (1.5-5%), fiber (2-7%) and for micronutrients as well namely; iron, calcium, phosphorus, and magnesium, etc. All these beneficial traits along with the availability of bioactive constituents (polyphenols and antioxidants) prove them to be therapeutic in action and also uplift the immunity among users. Employed isolation tactics for starch also govern yield characteristics and is usually preferred by way of wet method. Minor millets are abundant in starch (50-70%) thus application broadness is another attribute which could be addressed in vivid food segments. In case, native starches somehow possess least application credentials in food and non-food sectors thus modification is the only alternative to eliminate shortcomings. As in trend, modification using physical, chemical, and enzymatic ways have a wide impact on the properties of millet starch. The present review summarizes the nutritional, bioactive and therapeutic potential of minor millets, along with ways of starch modification and product development through millet involvement. © 2023 Society of Chemical Industry.


Assuntos
Milhetes , Amido , Humanos , Milhetes/química , Amido/química , Grão Comestível , Valor Nutritivo , Antioxidantes
2.
Antioxidants (Basel) ; 11(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139853

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative movement disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although a complex interplay of multiple environmental and genetic factors has been implicated, the etiology of neuronal death in PD remains unresolved. Various mechanisms of neuronal degeneration in PD have been proposed, including oxidative stress, mitochondrial dysfunction, neuroinflammation, α-synuclein proteostasis, disruption of calcium homeostasis, and other cell death pathways. While many drugs individually targeting these pathways have shown promise in preclinical PD models, this promise has not yet translated into neuroprotective therapies in human PD. This has consequently spurred efforts to identify alternative targets with multipronged therapeutic approaches. A promising therapeutic target that could modulate multiple etiological pathways involves drug-induced activation of a coordinated genetic program regulated by the transcription factor, nuclear factor E2-related factor 2 (Nrf2). Nrf2 regulates the transcription of over 250 genes, creating a multifaceted network that integrates cellular activities by expressing cytoprotective genes, promoting the resolution of inflammation, restoring redox and protein homeostasis, stimulating energy metabolism, and facilitating repair. However, FDA-approved electrophilic Nrf2 activators cause irreversible alkylation of cysteine residues in various cellular proteins resulting in side effects. We propose that the transcriptional repressor of BTB and CNC homology 1 (Bach1), which antagonizes Nrf2, could serve as a promising complementary target for the activation of both Nrf2-dependent and Nrf2-independent neuroprotective pathways. This review presents the current knowledge on the Nrf2/Bach1 signaling pathway, its role in various cellular processes, and the benefits of simultaneously inhibiting Bach1 and stabilizing Nrf2 using non-electrophilic small molecules as a novel therapeutic approach for PD.

3.
J Immunol ; 207(10): 2521-2533, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34645689

RESUMO

Many patients with coronavirus disease 2019 in intensive care units suffer from cytokine storm. Although anti-inflammatory therapies are available to treat the problem, very often, these treatments cause immunosuppression. Because angiotensin-converting enzyme 2 (ACE2) on host cells serves as the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to delineate a SARS-CoV-2-specific anti-inflammatory molecule, we designed a hexapeptide corresponding to the spike S1-interacting domain of ACE2 receptor (SPIDAR) that inhibited the expression of proinflammatory molecules in human A549 lung cells induced by pseudotyped SARS-CoV-2, but not vesicular stomatitis virus. Accordingly, wild-type (wt), but not mutated (m), SPIDAR inhibited SARS-CoV-2 spike S1-induced activation of NF-κB and expression of IL-6 and IL-1ß in human lung cells. However, wtSPIDAR remained unable to reduce activation of NF-κB and expression of proinflammatory molecules in lungs cells induced by TNF-α, HIV-1 Tat, and viral dsRNA mimic polyinosinic-polycytidylic acid, indicating the specificity of the effect. The wtSPIDAR, but not mutated SPIDAR, also hindered the association between ACE2 and spike S1 of SARS-CoV-2 and inhibited the entry of pseudotyped SARS-CoV-2, but not vesicular stomatitis virus, into human ACE2-expressing human embryonic kidney 293 cells. Moreover, intranasal treatment with wtSPIDAR, but not mutated SPIDAR, inhibited lung activation of NF-κB, protected lungs, reduced fever, improved heart function, and enhanced locomotor activities in SARS-CoV-2 spike S1-intoxicated mice. Therefore, selective targeting of SARS-CoV-2 spike S1-to-ACE2 interaction by wtSPIDAR may be beneficial for coronavirus disease 2019.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anti-Inflamatórios/uso terapêutico , COVID-19/terapia , Pulmão/imunologia , Peptídeos/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Células A549 , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/imunologia , Citocinas/metabolismo , Feminino , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Locomoção , Masculino , Camundongos , Terapia de Alvo Molecular , NF-kappa B/metabolismo , Peptídeos/genética , Peptídeos/uso terapêutico , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
4.
J Neuroimmune Pharmacol ; 16(1): 59-70, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33426604

RESUMO

COVID-19 is an infectious respiratory illness caused by the virus strain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and until now, there is no effective therapy against COVID-19. Since SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) for entering into host cells, to target COVID-19 from therapeutic angle, we engineered a hexapeptide corresponding to the ACE2-interacting domain of SARS-CoV-2 (AIDS) that inhibits the association between receptor-binding domain-containing spike S1 and ACE-2. Accordingly, wild type (wt), but not mutated (m), AIDS peptide inhibited SARS-CoV-2 spike S1-induced activation of NF-κB and expression of IL-6 in human lungs cells. Interestingly, intranasal intoxication of C57/BL6 mice with recombinant SARS-CoV-2 spike S1 led to fever, increase in IL-6 in lungs, infiltration of neutrophils into the lungs, arrhythmias, and impairment in locomotor activities, mimicking some of the important symptoms of COVID-19. However, intranasal treatment with wtAIDS, but not mAIDS, peptide reduced fever, protected lungs, improved heart function, and enhanced locomotor activities in SARS-CoV-2 spike S1-intoxicated mice. Therefore, selective targeting of ACE2-to-SARS-CoV-2 interaction by wtAIDS may be beneficial for COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/complicações , Febre/tratamento farmacológico , Febre/etiologia , Cardiopatias/etiologia , Cardiopatias/prevenção & controle , Inflamação/tratamento farmacológico , Inflamação/etiologia , Pneumopatias/etiologia , Pneumopatias/prevenção & controle , Fragmentos de Peptídeos/uso terapêutico , Administração Intranasal , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , COVID-19/patologia , Feminino , Cardiopatias/patologia , Interleucina-6/metabolismo , Pneumopatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/toxicidade
5.
Electrophoresis ; 41(7-8): 545-553, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31985060

RESUMO

Matrix components are known to significantly alter the ionization of a target analyte in ESI-based measurements particularly when working with complex biological samples. This issue however may be alleviated by extracting the analyte of interest from the original sample into a relatively simple matrix compatible with ESI mass-spectrometric analysis. In this article, we report a microfluidic device that enables such extraction of small peptide molecules into an ESI-compatible solvent stream significantly improving both the sensitivity and reproducibility of the measurements. The reported device realizes this analyte extraction capability based on the free-flow zone electrophoretic fractionation process using a set of internal electrodes placed across the width of the analysis channel. Employing lateral electric fields and separation distances of 75 V/cm and 600 µm, respectively, efficient extraction of the model peptide human angiotensin II was demonstrated allowing a reduction in its detection limit by one to three orders of magnitude using the ESI-MS method. The noted result was obtained in our experiments both for a relatively simple specimen comprising DNA strands and angiotensin II as well as for human serum samples spiked with the same model peptide.


Assuntos
Eletroforese Capilar/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Angiotensina II/sangue , DNA/análise , Desenho de Equipamento , Humanos , Limite de Detecção , Modelos Lineares , Peptídeos/análise , Reprodutibilidade dos Testes
6.
Analyst ; 143(4): 989-998, 2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-29379908

RESUMO

The requirement for an enzyme label to carry out a chemical reaction directly at the signaling region of the enzyme substrate in order to produce a large change in its detectability places a significant constraint on the scope of enzyme-linked immunosorbent assays (ELISAs). In particular, this requirement limits the kinds of enzyme label-substrate couples employable in ELISAs and prevents their independent optimization with respect to the enzyme reaction and the detectability of the enzyme reaction substrate/product. The detection limit and multiplexing capabilities of the assay are consequently restricted in addition to rendering the technique applicable to a narrow range of assay conditions/samples. Attempting to address some of these limitations, the current article describes a microfluidic ELISA method that does not require the enzyme label to act around the signaling region of the substrate molecule. A highly detectable rhodamine based substrate was synthesized to demonstrate the reported assay which upon cleavage by the enzyme label, alkaline phosphatase, transformed from a monoanionic to a monocationic species, both of which had nearly identical fluorescence properties. These species were later separated based on their charge difference using capillary zone electrophoresis in an integrated device yielding a quantitative measure for the analyte (human TNF-α) in our sample. Impressively, the noted approach not only enabled the use of a new kind of enzyme substrate for ELISAs but also allowed the detection of human TNF-α at concentrations over 54-fold lower than that possible on commercial microwell plates primarily due to the better detectability of the rhodamine dye.


Assuntos
Fosfatase Alcalina/química , Ensaio de Imunoadsorção Enzimática , Microfluídica/métodos , Humanos , Limite de Detecção , Rodaminas , Fator de Necrose Tumoral alfa/análise
7.
Mol Neurobiol ; 55(1): 804-821, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062948

RESUMO

Since substantia nigra (SN) and ventral tegmental area (VTA) dopaminergic neurons are, respectively, susceptible or largely unaffected in Parkinson's disease (PD), we searched for protein(s) that regulates this differential sensitivity. Differentially, expressed proteins in SN and VTA were investigated employing two-directional gel electrophoresis- matrix-assisted laser desorption ionization time of flight (MALDI-TOF-TOF) analyses. Prohibitin, which is involved in mitochondrial integrity, was validated using immunoblot, qRT-PCR, and immunohistochemistry in normal mice as well as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-model, PD postmortem human brains, and PD cybrids. In prohibitin over-expression, differentiated SH-SY5Y neurons were investigated for their susceptibility to PD neurotoxin, 1-methyl-4-phenyl-pyridnium (MPP+). Prohibitin, Hsc73, and Cu-Zn superoxide dismutase (Cu-Zn SOD) were highly expressed in VTA, whereas heat shock protein A8 (HSPA8) and 14-3-3ζ/δ were 2-fold more in SN. Prohibitin level was transiently increased in SN but unaltered in VTA on the third day of MPTP-induced mice, whereas in PD human brains, prohibitin was depleted in both these regions. Parallel to mouse SN, an enhanced prohibitin expression was found in human PD cybrids. In MPP+-induced cellular model of PD, reduction in prohibitin level was found to be associated with a loss in its binding with Ndufs3, a mitochondrial complex I protein partner. Prohibitin over-expression resisted MPP+-induced neuronal death by restoring mitochondrial membrane potential, preventing reactive oxygen species generation and cytochrome c release into cytosol. These protective phenomena exerted by prohibitin over-expression altogether hinder caspase 3 activation induced by MPP+. These results imply that prohibitin is an important negotiator protein that regulates dopaminergic cell death in SN and their protection in VTA in PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Repressoras/metabolismo , Substância Negra/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Adenoviridae/metabolismo , Idoso , Animais , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Citocromos c/metabolismo , Eletroforese em Gel Bidimensional , Feminino , Humanos , Células Híbridas , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mudanças Depois da Morte , Proibitinas , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/patologia
8.
Bioorg Med Chem Lett ; 27(2): 228-231, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27914796

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder affecting 35million people worldwide. A common strategy to improve the well-being of AD patients consists on the inhibition of acetylcholinesterase with the concomitant increase of the neurotransmitter acetylcholine at cholinergic synapses. Two series of unreported N-benzylpiperidines 5(a-h) and thiazolopyrimidines 9(a-q) molecules were synthesized and evaluated in vitro for their acetylcholinesterase (AChE) inhibitory activities. Among the newly synthesized compounds, 5h, 9h, 9j, and 9p displayed higher AChE enzyme inhibitory activities than the standard drug, galantamine, with IC50 values of 0.83, 0.98, and 0.73µM, respectively. Cytotoxicity studies of 5h, 9h, 9j, 9n and 9p on human neuroblastoma cells SH-SY5Y, showed no toxicity up to 40µM concentration. Molecular docking simulations of the active compounds 5h and 9p disclosed the crucial role of π-π-stacking in their binding interaction to the active site AChE enzyme. The presented compounds have potential as AChE inhibitors and potential AD drugs.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Piperidonas/farmacologia , Doença de Alzheimer/metabolismo , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Piperidonas/síntese química , Piperidonas/química , Relação Estrutura-Atividade
9.
Neurochem Int ; 89: 181-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26271432

RESUMO

The major neurodegenerative movement disorder Parkinson's disease (PD) is characterized by rest-tremor, akinesia, rigidity and inability to initiate movements. PD syndromes result from excessive loss of dopamine from the forebrain striatal region, due to dopaminergic neuronal death in the midbrain substantia nigra pars compacta. PD with multifactorial etiology is believed to ideally require a drug or different drugs that act(s) at multiple sites of action for symptomatic relief. Replenishing striatal dopamine by providing L-3,4-dihydroxyphenylalanine (l-DOPA) along with a peripheral aromatic amino acid decarboxylase inhibitor is the mainstay treatment for PD. Such prolonged therapy leads to debilitating effects, often worsening the affection. Interestingly some under-appreciated pharmaceutical compounds, including constituents of plants and nutraceuticals can synergize with l-DOPA to support mitochondrial function, suppress inflammation, ease oxidative stress, and in turn slow the progression of the disease. Tea and other dietary polyphenols are shown to provide relief to the disease syndromes and provide neuroprotection in cellular and animal models of PD. At par with these findings, random epidemiological studies in certain populations of the world support habitual tea drinking to reduce the risk of PD. The present review addresses how these tea constituents work at the cellular level to render effective control of the disease syndromes and suggests that tea synergizes with established drugs, such as l-DOPA to maximize their effects at certain levels in the disease phenotype-inducing canonical pathways of PD.


Assuntos
Antiparkinsonianos/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Polifenóis/metabolismo , Chá/metabolismo , Animais , Antiparkinsonianos/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Sinergismo Farmacológico , Humanos , Levodopa/administração & dosagem , Levodopa/metabolismo , Polifenóis/administração & dosagem
10.
Biomed Microdevices ; 16(5): 737-43, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24908138

RESUMO

Serological surveys are vital to determining the prevalence of a disease and/or the immunity status against it in any population. However, the relatively large sample volume requirement (1-10 mL) in traditional serum-based assays demands that blood draw camps be set up by medical professionals to obtain samples for these studies which significantly increases the time and cost associated with them. Here we address these drawbacks of a serosurvey by reducing the whole blood requirement in its diagnostic procedures down to 10 µL using the microfluidic platform. Such a miniaturization approach was demonstrated in our current work by developing a microchip based serological device for determining the serum levels of West Nile (WN) viral antibodies (IgG and IgM) to assess the immunity status against WN virus in Fremont County, Wyoming. Enzyme-linked immunosorbent assays (ELISA) were developed for these target analytes in glass microchannels to accomplish this task using antibodies/assay reagents purchased from commercial sources. The reported assays were directly quantitated using a fluorescence microplate reader which to our knowledge is the first account of signal measurement in a microchip based ELISA procedure using this standard instrument. To enable this quantitation method, the assay channels on our device were spaced identically as the wells on a commercial microplate, and a holder having the dimensions of this plate was used to accommodate the microchips. Our microfluidic assays showed an excellent correlation with the results from the microwell plate based experiments for significantly lower incubation periods and using only 3 µL of the ELISA reagents.


Assuntos
Anticorpos Antivirais/sangue , Vidro , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Dispositivos Lab-On-A-Chip , Vírus do Nilo Ocidental , Ensaio de Imunoadsorção Enzimática/instrumentação , Ensaio de Imunoadsorção Enzimática/métodos , Humanos
11.
Anal Chim Acta ; 810: 32-8, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24439502

RESUMO

In this article, we demonstrate a novel approach to enhancing the sensitivity of enzyme-linked immunosorbent assays (ELISA) through pre-concentration of the enzyme reaction product (resorufin/4-methylumbelliferone) in free solution. The reported pre-concentration was accomplished by transporting the resorufin/4-methylumbelliferone molecules produced in the ELISA process towards a high ionic-strength buffer stream in a microfluidic channel while applying a voltage drop across this merging region. A sharp change in the electric field around the junction of the two liquid streams was observed to abruptly slow down the negatively charged resorufin/4-methylumbelliferone species leading to the reported pre-concentration effect based on the field amplified stacking (FAS) technique. It has been shown that the resulting enhancement in the detectability of the enzyme reaction product significantly improves the signal-to-noise ratio in the system thereby reducing the smallest detectable analyte concentration in the ELISA method. Applying the above-described approach, we were able to detect mouse anti-BSA and human TNF-α at concentrations nearly 60-fold smaller than that possible on commercial microwell plates. For the human TNF-α sample, this improvement in assay sensitivity corresponded to a limit of detection (LOD) of 0.102pg mL(-1) using the FAS based microfluidic ELISA method as compared to 7.03pg mL(-1) obtained with the traditional microwell plate based approach. Moreover, because our ELISAs were performed in micrometer sized channels, they required sample volumes about two orders of magnitude smaller than that consumed in the latter case (1µL versus 100µL).


Assuntos
Fosfatase Alcalina/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Himecromona/análise , Himecromona/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Oxazinas/análise , Oxazinas/metabolismo , Fosfatase Alcalina/química , Animais , Autoanticorpos/análise , Autoanticorpos/imunologia , Humanos , Camundongos , Soroalbumina Bovina/imunologia , Estreptavidina/química , Estreptavidina/metabolismo , Fator de Necrose Tumoral alfa/análise
12.
Anal Chem ; 85(15): 7167-72, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23876106

RESUMO

In this article, we report the design of a microfluidic split flow thin cell (SPLITT) fractionation device with internal electrodes placed across the width of its analysis channel for assaying low-molecular weight samples. The reported device allows the realization of lateral electric fields and separation distances of the orders of 100 V/cm and 500 µm, respectively, that are suitable for fractionating such mixtures with high resolution. Our experiments show that a key challenge to realizing electrophoretic fractionations using the current design is to minimize the electroosmotically driven fluid circulations in its SPLITT channel that tend to hydrodynamically mix the liquid streams flowing through this duct. The present work addresses this challenge by chemically modifying the surface of our fluidic conduits with a new coating medium, N-(2-triethoxysilylpropyl) formamide, which has been shown to diminish electroosmotic flow in glass microchannels by over 5 orders of magnitude. Finally, we describe the integration of the reported microfluidic fractionation device to a mass spectrometer via the electrospray ionization interface to allow inline label-free detection of analytes in our assay. Product purity greater than 95% has been accomplished using the SPLITT system presented here for a sample of peptides having the same electrical polarity.


Assuntos
Fracionamento Químico/métodos , Técnicas Analíticas Microfluídicas/métodos , Eletro-Osmose , Peso Molecular , Peptídeos/química , Peptídeos/isolamento & purificação , Fatores de Tempo
13.
Anal Chem ; 84(16): 7029-36, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22861072

RESUMO

In this Article, we describe a microfluidic enzyme-linked immunosorbent assay (ELISA) method whose sensitivity can be substantially enhanced through preconcentration of the target analyte around a semipermeable membrane. The reported preconcentration has been accomplished in our current work via electrokinetic means allowing a significant increase in the amount of captured analyte relative to nonspecific binding in the trapping/detection zone. Upon introduction of an enzyme substrate into this region, the rate of generation of the ELISA reaction product (resorufin) was observed to increase by over a factor of 200 for the sample and 2 for the corresponding blank compared to similar assays without analyte trapping. Interestingly, in spite of nonuniformities in the amount of captured analyte along the surface of our analysis channel, the measured fluorescence signal in the preconcentration zone increased linearly with time over an enzyme reaction period of 30 min and at a rate that was proportional to the analyte concentration in the bulk sample. In our current study, the reported technique has been shown to reduce the smallest detectable concentration of the tumor marker CA 19-9 and Blue Tongue Viral antibody by over 2 orders of magnitude compared to immunoassays without analyte preconcentration. When compared to microwell based ELISAs, the reported microfluidic approach not only yielded a similar improvement in the smallest detectable analyte concentration but also reduced the sample consumption in the assay by a factor of 20 (5 µL versus 100 µL).


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Ensaio de Imunoadsorção Enzimática/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/isolamento & purificação , Antígeno CA-19-9/análise , Antígeno CA-19-9/isolamento & purificação , Estudos de Viabilidade , Limite de Detecção , Membranas Artificiais , Oxazinas/análise , Oxazinas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA