Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 58(1): 68-89, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29243930

RESUMO

Several drugs elicit their therapeutic efficacy by modulating multiple cellular targets and possess varied polypharmacological actions. The identification of the molecular targets of a potent bioactive molecule is essential in determining its overall polypharmacological profile. Experimental procedures are expensive and time-consuming. Therefore, computational approaches are actively implemented in rational drug discovery. Here, we demonstrate a computational pipeline, based on reverse virtual screening technique using several consensus scoring strategies, and perform structure-based kinase profiling of 12 FDA-approved drugs. This target prediction showed an overall good performance, with an average AU-ROC greater than 0.85 for most drugs, and identified the true targets even at the top 2% cutoff. In contrast, 10 non-kinase binder drugs exhibited lower binding efficiency and appeared in the bottom of ranking list. Subsequently, we validated this pipeline on a potent therapeutic molecule, mahanine, whose polypharmacological profile related to targeting kinases is unknown. Our target-prediction method identified different kinases. Furthermore, we have experimentally validated that mahanine is able to modulate multiple kinases that are involved in cross-talk with different signaling molecules, which thereby exhibits its polypharmacological action. More importantly, in vitro kinase assay exhibited the inhibitory effect of mahanine on two such predicted kinases' (mTOR and VEGFR2) activity, with IC50 values being ∼12 and ∼22 µM, respectively. Next, we generated a comprehensive drug-protein interaction fingerprint that explained the basis of their target selectivity. We observed that it is controlled by variations in kinase conformations followed by significant differences in crucial hydrogen-bond and van der Waals interactions. Such structure-based kinase profiling could provide useful information in revealing the unknown targets of therapeutic molecules from their polypharmacological behavior and would assist in drug discovery.


Assuntos
Polifarmacologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Área Sob a Curva , Linhagem Celular Tumoral , Simulação por Computador , Aprovação de Drogas , Descoberta de Drogas/métodos , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transdução de Sinais , Especificidade por Substrato , Estados Unidos , United States Food and Drug Administration
2.
Sci Rep ; 7(1): 4141, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28646156

RESUMO

Earlier we have established a carbazole alkaloid (mahanine) isolated from an Indian edible medicinal plant as an anticancer agent with minimal effect on normal cells. Here we report for the first time that mahanine-treated drug resistant and sensitive virulent Leishmania donovani promastigotes underwent apoptosis through phosphatidylserine externalization, DNA fragmentation and cell cycle arrest. An early induction of reactive oxygen species (ROS) suggests that the mahanine-induced apoptosis was mediated by oxidative stress. Additionally, mahanine-treated Leishmania-infected macrophages exhibited anti-amastigote activity by nitric oxide (NO)/ROS generation along with suppression of uncoupling protein 2 and Th1-biased cytokines response through modulating STAT pathway. Moreover, we have demonstrated the interaction of a few antioxidant enzymes present in parasite with mahanine through molecular modeling. Reduced genetic and protein level expression of one such enzyme namely ascorbate peroxidase was also observed in mahanine-treated promastigotes. Furthermore, oral administration of mahanine in acute murine model exhibited almost complete reduction of parasite burden, upregulation of NO/iNOS/ROS/IL-12 and T cell proliferation. Taken together, we have established a new function of mahanine as a potent antileishmanial molecule, capable of inducing ROS and exploit antioxidant enzymes in parasite along with modulation of host's immune response which could be developed as an inexpensive and nontoxic therapeutics either alone or in combination.


Assuntos
Carbazóis/farmacologia , Leishmania/efeitos dos fármacos , Leishmania/metabolismo , Oxirredução/efeitos dos fármacos , Tripanossomicidas/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Homeostase/efeitos dos fármacos , Humanos , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Moleculares , Conformação Molecular , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Tripanossomicidas/química
3.
J Phys Chem B ; 120(42): 10871-10884, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27690446

RESUMO

The role of tRNA in protein translational machinery and the influence of polyamines on the interaction of acylated and deacylated tRNA with ribosomes make polyamine-tRNA interaction conspicuous. We studied the interaction of two biogenic polyamines, spermine (SPM) and spermidine (SPD), with tRNAPhe and compared the results to those of the analogue 1-naphthyl acetyl spermine (NASPM). The binding affinity of SPM was comparable to that of NASPM; both were higher than that of SPD. The interactions led to significant thermal stabilization of tRNAPhe and an increase in the enthalpy of transition. All the interactions were exothermic in nature and displayed prominent enthalpy-entropy compensation behavior. The entropy-driven nature of the interaction, the structural perturbations observed, and docking results proved that the polyamines were bound in the groove of the anticodon arm of tRNAPhe. The amine groups of polyamines were involved in extensive electrostatic, H-bonding, and van der Waals interactions with tRNAPhe. The naphthyl group of NASPM showed an additional stacking interaction with G24 and G26 of tRNAPhe, which was absent in others. The results demonstrate that 1-naphthyl acetyl spermine can target the same binding sites as the biogenic polyamines without substituting for the functions played by them, which may lead to exhibition of selective anticancer cytotoxicity.

4.
J Med Chem ; 56(14): 5709-21, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23829449

RESUMO

Mahanine, a carbazole alkaloid is a potent anticancer molecule. To recognize the structure-activity correlation, mahanine was chemically modified. Antiproliferative activity of these derivatives was determined in 19 cancer cell lines from 7 different origins. Mahanine showed enhanced apoptosis compared to dehydroxy-mahanine-treated cells, indicating significant contribution of the C-7-OH group. O-Methylated-mahanine and N-methylated dehydroxy-mahanine-treated cells exhibited apoptosis only at higher concentrations, suggesting additional contribution of 9-NH group. Using biophysical techniques, we demonstrated that mahanine interacts with DNA through strong association with phosphate backbone compared to other derivatives but is unable to induce any conformational change in DNA, hence suggesting the possibility of being a minor groove binder. This was corroborated by molecular modeling and isothermal titration calorimetry studies. Taken together, the results of the current study represent the first evidence of involvement of C-7-OH and 9-NH group of mahanine for its cytotoxicity and its minor groove binding ability with DNA.


Assuntos
Antineoplásicos/farmacologia , Carbazóis/farmacologia , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Carbazóis/síntese química , Carbazóis/química , Carbazóis/metabolismo , DNA/metabolismo , Dano ao DNA , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metilação , Modelos Moleculares , Conformação de Ácido Nucleico , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Termodinâmica
5.
Int J Cancer ; 132(3): 695-706, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22729780

RESUMO

Pancreatic cancer is almost always fatal, in part because of its delayed diagnosis, poor prognosis, rapid progression and chemoresistance. Oncogenic proteins are stabilized by the Hsp90, making it a potential therapeutic target. We investigated the oxidative stress-mediated dysfunction of Hsp90 and the hindrance of its chaperonic activity by a carbazole alkaloid, mahanine, as a strategic therapeutic in pancreatic cancer. Mahanine exhibited antiproliferative activity against several pancreatic cancer cell lines through apoptosis. It induced early accumulation of reactive oxygen species (ROS) leading to thiol oxidation, aggregation and dysfunction of Hsp90 in MIAPaCa-2. N-acetyl-L-cysteine prevented mahanine-induced ROS accumulation, aggregation of Hsp90, degradation of client proteins and cell death. Mahanine disrupted Hsp90-Cdc37 complex in MIAPaCa-2 as a consequence of ROS generation. Client proteins were restored by MG132, suggesting a possible role of ubiquitinylated protein degradation pathway. Surface plasmon resonance study demonstrated that the rate of interaction of mahanine with recombinant Hsp90 is in the range of seconds. Molecular dynamics simulation showed its weak interactions with Hsp90. However, no disruption of the Hsp90-Cdc37 complex was observed at an early time point, thus ruling out that mahanine directly disrupts the complex. It did not impede the ATP binding pocket of Hsp90. Mahanine also reduced in vitro migration and tube formation in cancer cells. Further, it inhibited orthotopic pancreatic tumor growth in nude mice. Taken together, these results provide evidence for mahanine-induced ROS-mediated destabilization of Hsp90 chaperone activity resulting in Hsp90-Cdc37 disruption leading to apoptosis, suggesting its potential as a specific target in pancreatic cancer.


Assuntos
Adenocarcinoma/metabolismo , Antineoplásicos/farmacologia , Carbazóis/farmacologia , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias Pancreáticas/metabolismo , Acetilcisteína/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Trifosfato de Adenosina/metabolismo , Alcaloides/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Leupeptinas/farmacologia , Camundongos , Camundongos Nus , Estresse Oxidativo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo
6.
PLoS One ; 6(12): e28169, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164239

RESUMO

Using a lectin, Achatinin-H, having preferential specificity for glycoproteins with terminal 9-O-acetyl sialic acid derivatives linked in α2-6 linkages to subterminal N-acetylgalactosamine, eight distinct disease-associated 9-O-acetylated sialoglycoproteins was purified from erythrocytes of visceral leishmaniaisis (VL) patients (RBC(VL)). Analyses of tryptic fragments by mass spectrometry led to the identification of two high-molecular weight 9-O-acetylated sialoglycoproteins as human erythrocytic α- and ß-spectrin. Total spectrin purified from erythrocytes of VL patients (spectrin(VL)) was reactive with Achatinin-H. Interestingly, along with two high molecular weight bands corresponding to α- and ß-spectrin another low molecular weight 60 kDa band was observed. Total spectrin was also purified from normal human erythrocytes (spectrin(N)) and insignificant binding with Achatinin-H was demonstrated. Additionally, this 60 kDa fragment was totally absent in spectrin(N). Although the presence of both N- and O-glycosylations was found both in spectrin(N) and spectrin(VL), enhanced sialylation was predominantly induced in spectrin(VL). Sialic acids accounted for approximately 1.25 kDa mass of the 60 kDa polypeptide. The demonstration of a few identified sialylated tryptic fragments of α- and ß-spectrin(VL) confirmed the presence of terminal sialic acids. Molecular modelling studies of spectrin suggest that a sugar moiety can fit into the potential glycosylation sites. Interestingly, highly sialylated spectrin(VL) showed decreased binding with spectrin-depleted inside-out membrane vesicles of normal erythrocytes compared to spectrin(N) suggesting functional abnormality. Taken together this is the first report of glycosylated eythrocytic spectrin in normal erythrocytes and its enhanced sialylation in RBC(VL). The enhanced sialylation of this cytoskeleton protein is possibly related to the fragmentation of spectrin(VL) as evidenced by the presence of an additional 60 kDa fragment, absent in spectrin(N) which possibly affects the biology of RBC(VL) linked to both severe distortion of erythrocyte development and impairment of erythrocyte membrane integrity and may provide an explanation for their sensitivity to hemolysis and anemia in VL patients.


Assuntos
Eritrócitos/metabolismo , Leishmaniose Visceral/metabolismo , Espectrina/biossíntese , Acetilglucosamina/química , Adulto , Carboidratos/química , Dicroísmo Circular , Citoesqueleto/metabolismo , Eritrócitos/citologia , Feminino , Glicosilação , Humanos , Leishmaniose Visceral/sangue , Masculino , Espectrometria de Massas/métodos , Peso Molecular , Peptídeos/química , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA