Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mSphere ; 8(6): e0051223, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37971273

RESUMO

IMPORTANCE: Although inflammatory bowel diseases are on the rise, what factors influence IBD risk and severity, and the underlying mechanisms remain to be fully understood. Although host genetics, microbiome, and environmental factors have all been shown to correlate with the development of IBD, cause and effect are difficult to disentangle in this context. For example, AIEC is a known pathobiont found in IBD patients, but it remains unclear if gut inflammation during IBD facilitates colonization with AIEC, or if AIEC colonization makes the host more susceptible to pro-inflammatory stimuli. It is critical to understand the mechanisms that contribute to AIEC infections in a susceptible host in order to develop successful therapeutics. Here, we show that the larval zebrafish model recapitulates key features of AIEC infections in other animal models and can be utilized to address these gaps in knowledge.


Assuntos
Colite , Doença de Crohn , Enterocolite , Infecções por Escherichia coli , Doenças Inflamatórias Intestinais , Humanos , Animais , Peixe-Zebra , Colite/induzido quimicamente , Doença de Crohn/complicações , Escherichia coli/genética , Mucosa Intestinal , Enterocolite/complicações
2.
Arch Virol ; 162(9): 2727-2736, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28589512

RESUMO

Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) is responsible for morbidity of the Indian non-mulberry silkworm, A. mylitta. AmCPV belongs to the family Reoviridae and has 11 double-stranded (ds) RNA genome segments (S1-S11). Segment 2 (S2) encodes a 123-kDa polypeptide with RNA-dependent RNA polymerase (RdRp) activity. To examine the RNA-binding properties of the viral polymerase, the full-length RdRp and its three domains (N-terminal, polymerase and C-terminal domains) were expressed in Escherichia coli BL21 (DE3) cells with hexahistidine and trigger factor tag fused consecutively at its amino terminus, and the soluble fusion proteins were purified. The purified full-length polymerase specifically bound to the 3' untranslated region (3'-UTR) of a viral plus-sense (+) strand RNA with strong affinity regardless of the salt concentrations, but the isolated polymerase domain of the enzyme exhibited poor RNA-binding ability. Further, the RdRp recognition signals were found to be different from the cis-acting signals that promote minus-sense (-) strand RNA synthesis, because different internal regions of the 3'-UTR of the (+) strand RNA did not effectively compete out the binding of RdRp to the intact 3'-UTR of the (+) strand RNA, but all of these RNA molecules could serve as templates for (-) strand RNA synthesis by the polymerase.


Assuntos
Escherichia coli/metabolismo , Nucleopoliedrovírus/enzimologia , Nucleopoliedrovírus/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Ligação Proteica , Domínios Proteicos , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética
3.
mSphere ; 2(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28289724

RESUMO

The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas. This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small changes in ciliary length by minimizing variability in the population. We find that this method alters the key relationship between cell size and the amount of protein accumulated for flagellar growth. This provides a rapid alternative to traditional methods of cell synchronization for uncovering novel regulators of cilia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA