Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Transl Oncol ; 50: 102140, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39369580

RESUMO

The PIK3CA gene is a linchpin in the intricate molecular network governing triple-negative breast cancer (TNBC) tumor tropism, serving as a focal point for understanding this aggressive disease. Anchored within the PI3K/AKT/mTOR signaling axis, PIK3CA mutations exert substantial influence, driving cellular processes that highlight the unique biology of TNBC. This review meticulously highlights the association between PIK3CA mutations and distinct TNBC subtypes, elucidating the gene's multifaceted contributions to tumor tropism. Molecular dissection reveals how PIK3CA mutations dynamically modulate chemokine responses, growth factor signaling, and extracellular matrix interactions, orchestrating the complex migratory behaviour characteristic of TNBC cells. A detailed exploration of PIK3CA-targeted strategies in the therapeutic arena is presented, outlining the current landscape of clinical trials and precision medicine approaches. As the scientific narrative converges, this review underscores the critical role of PIK3CA in shaping the molecular intricacies of TNBC tumor tropism and illuminates pathways toward tailored interventions, promising a paradigm shift in the clinical management of TNBC.

2.
Toxicology ; : 153957, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307384

RESUMO

Bisphenol A (BPA) exposure during pregnancy is known to predispose offspring to obesity in later life. Our previous studies demonstrated obesogenic effects in BPA-exposed offspring, including excess body fat, increased feed efficiency, adipocyte hypertrophy, and altered leptin signaling. However, the role of the placenta in mediating these effects remained unclear. This study investigates the mechanisms by which BPA exposure affects placental glucose and lipid transporters and their impact on offspring adiposity in Wistar rats. Dams were orally gavaged with BPA [0.4 (low dose-LD) and 4.0 (high dose-HD) µg/kg body weight] from gestational day (gD) 4 to 14. Gestational exposure to LD BPA increased the expression of 11ß hydroxysteroid dehydrogenase 1 (11ß HSD1) and estrogen receptor alpha (ERα) proteins (p<0.05) in the placenta compared to control and HD BPA. Similar changes were observed in the expression of mTOR signaling mediators, fatty acid transporters, and intracellular fatty acid-binding proteins. There were no changes in the dam's body weight or lipid and glucose profiles. However, there was a dose dependent increase in glucose transporter (GLUT1) expression in the placenta. While LD BPA increased hexokinase 2 expression in the placenta, HD BPA had no effect. Both doses of BPA increased IL6 expression, but only LD BPA exposure increased PPAR-gamma expression. Additionally, BPA exposure induced ADRP expression and localization, suggesting potential lipid overload in the placenta. Furthermore, BPA exposure altered the placental epigenetic profile, with increased expression of DNA methyltransferases (DNMTs). Overall, gestational BPA exposure led to dose-specific alterations in placental glucose and lipid metabolic activities, possibly playing an role in increasing the supply of these macronutrients to the fetus and predisposing the offspring to obesity.

3.
Nutr Cancer ; 76(9): 789-814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39207359

RESUMO

Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. Despite advances in treatment modalities, its prevalence continues to rise, notably among younger populations. Unhealthy dietary habits, sedentary routines, and obesity have been identified as one of the key contributors to the development of colorectal cancer, apart from genetic and epigenetic modifications. Recognizing the profound impact of diet and lifestyle on the intricate gut microbiota ecosystem offers a promising avenue for understanding CRC development and its treatment. Gut dysbiosis, characterized by imbalances favoring harmful microbes over beneficial ones, has emerged as a defining feature of CRC. Changes in diet and lifestyle can profoundly alter the composition of gut microbes and the metabolites they produce, potentially contributing to CRC onset. Focusing on recent evidence, this review discussed various dietary factors, such as high consumption of red and processed meats and low fiber intake, and lifestyle factors, including obesity, lack of physical activity, smoking, and excessive alcohol consumption, that influence the gut microbiome composition and elevate CRC risk.


Assuntos
Neoplasias Colorretais , Dieta , Microbioma Gastrointestinal , Estilo de Vida , Humanos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/etiologia , Microbioma Gastrointestinal/fisiologia , Dieta/métodos , Disbiose , Obesidade/microbiologia , Fatores de Risco , Fibras na Dieta/administração & dosagem
4.
Biomed Pharmacother ; 178: 117177, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053423

RESUMO

Cytokines regulate immune responses essential for maintaining immune homeostasis, as deregulated cytokine signaling can lead to detrimental outcomes, including inflammatory disorders. The antioxidants emerge as promising therapeutic agents because they mitigate oxidative stress and modulate inflammatory pathways. Antioxidants can potentially ameliorate inflammation-related disorders by counteracting excessive cytokine-mediated inflammatory responses. A comprehensive understanding of cytokine-mediated inflammatory pathways and the interplay with antioxidants is paramount for developing natural therapeutic agents targeting inflammation-related disorders and helping to improve clinical outcomes and enhance the quality of life for patients. Among these antioxidants, curcumin, vitamin C, vitamin D, propolis, allicin, and cinnamaldehyde have garnered attention for their anti-inflammatory properties and potential therapeutic benefits. This review highlights the interrelationship between cytokines-mediated disorders in various diseases and therapeutic approaches involving antioxidants.


Assuntos
Anti-Inflamatórios , Antioxidantes , Citocinas , Inflamação , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Humanos , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
5.
Nutrients ; 16(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931215

RESUMO

Evidence is emerging on the role of maternal diet, gut microbiota, and other lifestyle factors in establishing lifelong health and disease, which are determined by transgenerationally inherited epigenetic modifications. Understanding epigenetic mechanisms may help identify novel biomarkers for gestation-related exposure, burden, or disease risk. Such biomarkers are essential for developing tools for the early detection of risk factors and exposure levels. It is necessary to establish an exposure threshold due to nutrient deficiencies or other environmental factors that can result in clinically relevant epigenetic alterations that modulate disease risks in the fetus. This narrative review summarizes the latest updates on the roles of maternal nutrients (n-3 fatty acids, polyphenols, vitamins) and gut microbiota on the placental epigenome and its impacts on fetal brain development. This review unravels the potential roles of the functional epigenome for targeted intervention to ensure optimal fetal brain development and its performance in later life.


Assuntos
Epigenoma , Desenvolvimento Fetal , Microbioma Gastrointestinal , Fenômenos Fisiológicos da Nutrição Materna , Placenta , Humanos , Gravidez , Feminino , Placenta/metabolismo , Epigênese Genética , Nutrientes , Polifenóis , Encéfalo/metabolismo , Encéfalo/embriologia , Dieta , Ácidos Graxos Ômega-3
6.
Front Pharmacol ; 15: 1341773, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919255

RESUMO

Colorectal cancer (CRC) remains a significant global health concern, being the third most diagnosed cancer in men and the second most diagnosed cancer in women, with alarming mortality rates. Natural phytochemicals have gained prominence among various therapeutic avenues explored due to their diverse biological properties. Curcumin, extracted from turmeric, and resveratrol, a polyphenol found in several plants, have exhibited remarkable anticancer activities. However, their limited solubility and bioavailability hinder their therapeutic efficacy. To enhance the bioavailability of these compounds, nanomaterials work as effective carriers with biogenic silica (BS) attracting major attention owing to their exceptional biocompatibility and high specific surface area. In this study, we developed Curcumin-resveratrol-loaded BS (Cur-Res-BS) and investigated their effects on colorectal cancer cell lines (HCT-116 and Caco-2). Our results demonstrated significant concentration-dependent inhibition of cell viability in HCT-116 cells and revealed a complex interplay of crucial proto-onco or tumor suppressor genes, such as TP53, Bax, Wnt-1, and CTNNB1, which are commonly dysregulated in colorectal cancer. Notably, Cur-Res-BS exhibited a synergistic impact on key signaling pathways related to colorectal carcinogenesis. While these findings are promising, further investigations are essential to comprehensively understand the mechanisms and optimize the therapeutic strategy. Moreover, rigorous safety assessments and in vitro studies mimicking the in vivo environment are imperative before advancing to in vivo experiments, ensuring the potential of Cur-Res-BS as an efficient treatment for CRC.

7.
Biomed Pharmacother ; 171: 116211, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38290253

RESUMO

Research into cancer therapeutics has uncovered various potential medications based on metal-containing scaffolds after the discovery and clinical applications of cisplatin as an anti-cancer agent. This has resulted in many metallodrugs that can be put into medical applications. These metallodrugs have a wider variety of functions and mechanisms of action than pure organic molecules. Although platinum-based medicines are very efficient anti-cancer agents, they are often accompanied by significant side effects and toxicity and are limited by resistance. Some of the most studied and developed alternatives to platinum-based anti-cancer medications include metallodrugs based on ruthenium, gold, copper, iridium, and osmium, which showed effectiveness against many cancer cell lines. These metal-based medicines represent an exciting new category of potential cancer treatments and sparked a renewed interest in the search for effective anti-cancer therapies. Despite the widespread development of metal complexes touted as powerful and promising in vitro anti-cancer therapeutics, only a small percentage of these compounds have shown their worth in vivo models. Metallodrugs, which are more effective and less toxic than platinum-based drugs and can treat drug-resistant cancer cells, are the focus of this review. Here, we highlighted some of the most recently developed Pt, Ru, Au, Cu, Ir, and Os complexes that have shown significant in vivo antitumor properties between 2017 and 2023.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Platina
8.
Dig Liver Dis ; 56(1): 112-122, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37407321

RESUMO

The gut microbiome and its metabolites are involved in developing and progressing liver disease. Various liver illnesses, such as non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis C, and hepatocellular carcinoma, are made worse and have worse prognoses with aging. Dysbiosis, which occurs when the symbiosis between the microbiota and the host is disrupted, can significantly negatively impact health. Liver disease is linked to qualitative changes, such as an increase in hazardous bacteria and a decrease in good bacteria, as well as quantitative changes in the overall amount of bacteria (overgrowth). Intestinal gut microbiota and their metabolites may lead to chronic liver disease development through various mechanisms, such as increasing gut permeability, persistent systemic inflammation, production of SCFA, bile acids, and alteration in metabolism. Age-related gut dysbiosis can disrupt the communication between gut microbiota and the host, impacting the host's health and lifespan. With aging, a gradual loss of the ability to maintain homeostasis because of structural alteration and gut dysbiosis leads to the disease progression in end-stage liver disease. Recently chronic liver disease has been identified as a global problem. A large number of patients are receiving liver transplants yearly. Thereby gut microbiome ecology is changing in the patients of the gut due to the changes in pathophysiology during the preoperative stage. The present review summarises the age-associated dysbiosis of gut microbial composition and its contribution to chronic liver disease. This review also provides information about the impact of liver transplant on the gut microbiome and possible disadvantageous effects of alteration in gut microbiota.


Assuntos
Microbioma Gastrointestinal , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Microbioma Gastrointestinal/fisiologia , Disbiose/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Neoplasias Hepáticas/metabolismo
9.
Genes (Basel) ; 14(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003013

RESUMO

Obesity is a condition that is characterized by the presence of excessive adipose tissue in the body. Obesity has become one of the main health concerns worldwide since it can lead to other chronic ailments, such as type 2 diabetes or fatty liver disease, and it could be an aggravating factor in infections. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression and can play an important role in controlling crucial biological processes involved in the onset of obesity, such as lipogenesis, adipogenesis, lipid metabolism, or the regulation of cytokines and chemokines. Moreover, chemical compounds present in food or food packaging can alter miRNA expression and regulate the aforementioned biological mechanisms related to diabetes onset and progression. Furthermore, therapies, such as bariatric surgery and aerobic exercise training, can also influence the expression profile of miRNAs in obesity. Therefore, the present review provides insight into the current research on the role of miRNAs in obesity and obesity-derived ailments, intending to develop novel therapies to effectively manage these disorders.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Obesidade/genética , Obesidade/metabolismo , Tecido Adiposo/metabolismo
10.
Front Endocrinol (Lausanne) ; 14: 1215353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854189

RESUMO

Maternal endocrine homeostasis is vital to a successful pregnancy, regulated by several hormones such as human chorionic gonadotropin, estrogen, leptin, glucocorticoid, insulin, prostaglandin, and others. Endocrine stress during pregnancy can modulate nutrient availability from mother to fetus, alter fetoplacental growth and reproductive functions. Endocrine disrupters such as bisphenols (BPs) and phthalates are exposed in our daily life's highest volume. Therefore, they are extensively scrutinized for their effects on metabolism, steroidogenesis, insulin signaling, and inflammation involving obesity, diabetes, and the reproductive system. BPs have their structural similarity to 17-ß estradiol and their ability to bind as an agonist or antagonist to estrogen receptors to elicit an adverse response to the function of the endocrine and reproductive system. While adults can negate the adverse effects of these endocrine-disrupting chemicals (EDCs), fetuses do not equip themselves with enzymatic machinery to catabolize their conjugates. Therefore, EDC exposure makes the fetoplacental developmental window vulnerable to programming in utero. On the one hand prenatal BPs and phthalates exposure can impair the structure and function of the ovary and uterus, resulting in placental vascular defects, inappropriate placental expression of angiogenic growth factors due to altered hypothalamic response, expression of nutrient transporters, and epigenetic changes associated with maternal endocrine stress. On the other, their exposure during pregnancy can affect the offspring's metabolic, endocrine and reproductive functions by altering fetoplacental programming. This review highlights the latest development in maternal metabolic and endocrine modulations from exposure to estrogenic mimic chemicals on subcellular and transgenerational changes in placental development and its effects on fetal growth, size, and metabolic & reproductive functions.


Assuntos
Insulinas , Placenta , Gravidez , Feminino , Humanos , Sistema Endócrino , Estrogênios/farmacologia , Desenvolvimento Fetal
11.
Sci Total Environ ; 904: 166775, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660821

RESUMO

Prenatal exposure to endocrine-disrupting bisphenol A (BPA) shows a long-lasting programming effect on an organ's metabolic function and predisposes it to the risk of adult metabolic diseases. Although a reduced contaminant risk due to "BPA-free" exposure is proposed, limited data on a comparative assessment of gestational exposure to BPS and BPA and their effects on metaflammation in predisposing liver metabolic disease is reported. Pregnant Wistar rats were exposed to BPS and BPA (0.0, 0.4, 4.0 µg/kg bw) via gavage from gestational day 4 to 21, and effects were assessed in the 90 d male offspring. Prenatal BPS-exposed offspring showed a more obesogenic effect than BPA, including changes in body fat distribution, feed efficiency, and leptin signalling. The BPS exposure induced the adipocyte hypertrophy of visceral adipose to a greater extent than BPA. The adipose hypertrophy was augmented by tissue inflammation, endoplasmic reticulum (ER) stress, and apoptosis due to increased expression of pro-inflammatory (IL6, IL1ß, CRP, COX2) cytokines, ER stress modulator (CHOP), and apoptotic effector (Caspase 3). The enlarged, stressed, inflamed adipocytes triggered de novo lipogenesis in the bisphenol-exposed offspring liver due to increased expression of cholesterol and lipid biogenesis mediators (srebf1, fasn, acaca, PPARα) concomitant with elevated triacylglycerol (TG) and cholesterol (TC), resulted in impaired hepatic clearance of lipids. The lipogenic effects were also promoted by increased expression of HSD11ß1. BPS exposure increased absolute liver weight, discoloration, altered liver lobes more than in BPA. Liver histology showed numerous lipid droplets, and hepatocyte ballooning, upregulated ADRP expression, an increased expression of pro-inflammatory mediators (IL6, CRP, IL1ß, TNFα, COX2), enhanced lipid peroxidation in the BPS-exposed offspring's liver suggest altered metaflammation leads to microvesicular steatosis. Overall, gestational BPS exposure demonstrated a higher disruption in metabolic changes than BPA, involving excess adiposity, liver fat, inflammation, and predisposition to steatosis in the adult male offspring.


Assuntos
Fígado Gorduroso , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Ratos , Masculino , Animais , Humanos , Ratos Wistar , Ciclo-Oxigenase 2 , Interleucina-6 , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/patologia , Inflamação/induzido quimicamente , Colesterol , Hipertrofia , Compostos Benzidrílicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
12.
Biomed Pharmacother ; 167: 115591, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774669

RESUMO

Despite scientific development, cancer is still a fatal disease. The development of cancer is thought to be significantly influenced by fatty acids. Several mechanisms that control fatty acid absorption and metabolism are reported to be altered in cancer cells to support their survival. Cancer cells can use de novo synthesis or uptake of extracellular fatty acid if one method is restricted. This factor makes it more difficult to target one pathway while failing to treat the disease properly. Side effects may also arise if several inhibitors simultaneously target many targets. If a viable inhibitor could work on several routes, the number of negative effects might be reduced. Comparative investigations against cell viability have found several potent natural and manmade substances. In this review, we discuss the complex roles that fatty acids play in the development of tumors and the progression of cancer, newly discovered and potentially effective natural and synthetic compounds that block the uptake and metabolism of fatty acids, the adverse side effects that can occur when multiple inhibitors are used to treat cancer, and emerging therapeutic approaches.

13.
Front Bioeng Biotechnol ; 11: 1208547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576994

RESUMO

MicroRNAs (miRNAs) are short (18-25 nt), non-coding, widely conserved RNA molecules responsible for regulating gene expression via sequence-specific post-transcriptional mechanisms. Since the human miRNA transcriptome regulates the expression of a number of tumor suppressors and oncogenes, its dysregulation is associated with the clinical onset of different types of cancer. Despite the fact that numerous therapeutic approaches have been designed in recent years to treat cancer, the complexity of the disease manifested by each patient has prevented the development of a highly effective disease management strategy. However, over the past decade, artificial miRNAs (i.e., anti-miRNAs and miRNA mimics) have shown promising results against various cancer types; nevertheless, their targeted delivery could be challenging. Notably, numerous reports have shown that nanotechnology-based delivery of miRNAs can greatly contribute to hindering cancer initiation and development processes, representing an innovative disease-modifying strategy against cancer. Hence, in this review, we evaluate recently developed nanotechnology-based miRNA drug delivery systems for cancer therapeutics and discuss the potential challenges and future directions, such as the promising use of plant-made nanoparticles, phytochemical-mediated modulation of miRNAs, and nanozymes.

14.
Biomed Pharmacother ; 162: 114606, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36989716

RESUMO

Cells are continually exposed to reactive oxygen species (ROS) generated during cellular metabolism. Apoptosis, necrosis, and autophagy are biological processes involving a feedback cycle that causes ROS molecules to induce oxidative stress. To adapt to ROS exposure, living cells develop various defense mechanisms to neutralize and use ROS as a signaling molecule. The cellular redox networks combine signaling pathways that regulate cell metabolism, energy, cell survival, and cell death. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) are essential antioxidant enzymes that are required for scavenging ROS in various cell compartments and response to stressful situations. Among the non-enzymatic defenses, vitamin C, glutathione (GSH), polyphenols, carotenoids, vitamin E, etc., are also essential. This review article describes how ROS are produced as byproducts of oxidation/reduction (redox) processes and how the antioxidants defense system is directly or indirectly engaged in scavenging ROS. In addition, we used computational methods to determine the comparative profile of binding energies of several antioxidants with antioxidant enzymes. The computational analysis demonstrates that antioxidants with a high affinity for antioxidant enzymes regulate their structures.


Assuntos
Antioxidantes , Estresse Oxidativo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Apoptose , Glutationa/metabolismo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-36924605

RESUMO

Maternal n-3 PUFA (omega-3) deficiency can affect brain development in utero and postnatally. Despite the evidence, the impacts of n-3 PUFA deficiency on the expression of neurogenesis genes in the postnatal hippocampus remained elusive. Since postnatal brain development requires PUFAs via breast milk, we examined the fatty acid composition of breast milk and hippocampal expression of neurogenesis genes in n-3 PUFA deficient 21d mice. In addition, the expression of fatty acid desaturases, elongases, free fatty acids signaling receptors, insulin and leptin, and glucose transporters were measured. Among the genes involved in neurogenesis, the expression of brain-specific tenascin-R (TNR) was downregulated to a greater extent (∼31 fold), followed by adenosine A2A receptor (A2AAR), dopamine receptor D2 (DRD2), glial cell line-derived neurotrophic factor (GDNF) expression in the n-3 PUFA deficient hippocampus. Increasing dietary LA to ALA (50:1) elevated the ARA to DHA ratio by ∼8 fold in the n-3 PUFA deficient breast milk, with an overall increase of total n-6/n-3 PUFAs by ∼15:1 (p<0.05) compared to n-3 PUFA sufficient (LA to ALA: 2:1) diet. The n-3 PUFA deficient mice exhibited upregulation of FADS1, FADS2, ELOVL2, ELOVL5, ELOVL6, GPR40, GPR120, LEPR, IGF1 and downregulation of GLUT1, GLUT3, and GLUT4 mRNA expression in hippocampus (p<0.05). Maternal n-3 PUFA deficiency affects the hippocampal expression of key neurogenesis genes in the offspring with concomitant expression of desaturase and elongase genes, suggesting the importance of dietary n-3 PUFA for neurodevelopment.


Assuntos
Ácidos Graxos Ômega-3 , Gravidez , Feminino , Animais , Camundongos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Lactação , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Neurogênese , Hipocampo/metabolismo
16.
Front Genet ; 14: 1137017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36896239

RESUMO

MicroRNAs (miRNAs) are small endogenous non-coding RNA molecules capable of regulating gene expression at the post-transcriptional level either by translational inhibition or mRNA degradation and have recently been importantly related to the diagnosis and prognosis of the most relevant endocrine disorders. The endocrine system comprises various highly vascularized ductless organs regulating metabolism, growth and development, and sexual function. Endocrine disorders constitute the fifth principal cause of death worldwide, and they are considered a significant public health problem due to their long-term effects and negative impact on the patient's quality of life. Over the last few years, miRNAs have been discovered to regulate various biological processes associated with endocrine disorders, which could be advantageous in developing new diagnostic and therapeutic tools. The present review aims to provide an overview of the most recent and significant information regarding the regulatory mechanism of miRNAs during the development of the most relevant endocrine disorders, including diabetes mellitus, thyroid diseases, osteoporosis, pituitary tumors, Cushing's syndrome, adrenal insufficiency and multiple endocrine neoplasia, and their potential implications as disease biomarkers.

17.
J Nutr ; 153(1): 96-105, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913483

RESUMO

BACKGROUND: Natural products rich in polyphenols have been shown to lower plasma trimethylamine-n-oxide (TMAO) known for its proatherogenic effects by modulating the intestinal microbiota. OBJECTIVES: We aimed to determine the impact of Fruitflow, a water-soluble tomato extract, on TMAO, fecal microbiota, and plasma and fecal metabolites. METHODS: Overweight and obese adults (n = 22, BMI 28-35 kg/m2) were included in a double-blind, placebo-controlled, cross-over study receiving 2×150 mg Fruitflow per day or placebo (maltodextrin) for 4 wk with a 6-week wash-out between interventions. Stool, blood, and urine samples were collected to assess changes in plasma TMAO (primary outcome) as well as fecal microbiota, fecal and plasma metabolites, and urine TMAO (secondary outcomes). In a subgroup (n = 9), postprandial TMAO was evaluated following a choline-rich breakfast (∼450 mg). Statistical methods included paired t-tests or Wilcoxon signed rank tests and permutational multivariate analysis of variance. RESULTS: Fruitflow, but not placebo, reduced fasting levels of plasma (-1.5 µM, P ≤ 0.05) and urine (-19.1 µM, P ≤ 0.01) TMAO as well as plasma lipopolysaccharides (-5.3 ng/mL, P ≤ 0.05) from baseline to the end of intervention. However, these changes were significant only for urine TMAO levels when comparing between the groups (P ≤ 0.05). Changes in microbial beta, but not alpha, diversity paralleled this with a significant difference in Jaccard distance-based Principal Component (P ≤ 0.05) as well as decreases in Bacteroides, Ruminococccus, and Hungatella and increases in Alistipes when comparing between and within groups (P ≤ 0.05, respectively). There were no between-group differences in SCFAs and bile acids (BAs) in both faces and plasma but several changes within groups such as an increase in fecal cholic acid or plasma pyruvate with Fruitflow (P ≤ 0.05, respectively). An untargeted metabolomic analysis revealed TMAO as the most discriminant plasma metabolite between groups (P ≤ 0.05). CONCLUSIONS: Our results support earlier findings that polyphenol-rich extracts can lower plasma TMAO in overweight and obese adults related to gut microbiota modulation. This trial was registered at clinicaltrials.gov as NCT04160481 (https://clinicaltrials.gov/ct2/show/NCT04160481?term= Fruitflow&draw= 2&rank= 2).


Assuntos
Microbioma Gastrointestinal , Solanum lycopersicum , Adulto , Humanos , Sobrepeso , Estudos Cross-Over , Obesidade , Metilaminas/metabolismo , Óxidos
18.
Arch Immunol Ther Exp (Warsz) ; 71(1): 6, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36807774

RESUMO

Colon cancer etiology involves a wide spectrum of genetic and epigenetic alterations, finding it challenging to find effective therapeutic strategies. Quercetin exhibits potent anti-proliferative/apoptotic properties. In the present study, we aimed to elucidate the anti-cancer and anti-aging effect of quercetin in colon cancer cell lines. The anti-proliferative effect of quercetin was assessed in vitro by CCK-8 in normal and colon cancer cell lines. To check the anti-aging potential of quercetin, collagenase, elastase, and hyaluronidase inhibitory activity assays were performed. The epigenetic and DNA damage assays were performed using the human NAD-dependent deacetylase Sirtuin-6, proteasome 20S, Klotho, Cytochrome-C, and telomerase ELISA kits. Furthermore, the aging-associated miRNA expression profiling was performed on colon cancer cells. The treatment with quercetin inhibited cell proliferation of colon cancer cells in a dose-dependent manner. Quercetin arrested colon cancer cell growth by modulating expression of aging proteins including Sirtuin-6 and Klotho and also by inhibiting telomerase activity to restrict the telomere length which is evident from qPCR analysis. Quercetin also exhibited DNA damage protection by reducing proteasome 20S levels. The miRNA expression profiling results displayed differential expression of miRNA in colon cancer cell, and in addition, the highly upregulated miRNA was involved in the regulation of cell cycle, proliferation, and transcription. Our data suggest that quercetin treatment inhibited cell proliferation in colon cancer cells through regulating the anti-aging protein expression and provides better understanding for quercetin's potential use in colon cancer treatment.


Assuntos
Neoplasias do Colo , MicroRNAs , Sirtuínas , Telomerase , Humanos , Apoptose , Proliferação de Células , Epigênese Genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Complexo de Endopeptidases do Proteassoma/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Sirtuínas/metabolismo , Sirtuínas/farmacologia , Sirtuínas/uso terapêutico , Telomerase/metabolismo , Telomerase/farmacologia , Telomerase/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
19.
Lipids Health Dis ; 22(1): 17, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717943

RESUMO

BACKGROUND: Nonalcoholic fatty liver, or NAFLD, is the most common chronic liver ailment. It is characterized by excessive fat deposition in hepatocytes of individuals who consume little or no alcohol and are unaffected by specific liver damaging factors. It is also associated with extrahepatic manifestations such as chronic kidney disease, cardiovascular disease, and sleep apnea. The global burden of NAFLD is increasing at an alarming rate. However, no pharmacologically approved drugs against NAFLD are available owing to their complex pathophysiology. Genome-wide association studies have uncovered SNPs in the fat mass and obesity-associated gene (FTO) that are robustly associated with obesity and higher BMI. The prevalence of NAFLD increases in parallel with the increasing prevalence of obesity. Since FTO might play a crucial role in NAFLD development, the current study identified five potentially deleterious mutations from 383 ns-SNPs in the human FTO gene using various in silico tools. METHODS: This study aims to identify potentially deleterious nonsynonymous SNPs (ns-SNPs) employing various in silico tools. Additionally, molecular modeling approaches further studied the structural changes caused by identified SNPs. Moreover, molecular dynamics studies finally investigated the binding potentials of the phytochemicals resveratrol, rosmarinic acid, and capsaicin with different mutant forms of FTO. RESULTS: The current investigation has five potentially deleterious mutations from 383 ns-SNPs in the human FTO gene using various in silico tools. The present study identified five nsSNPs of the human gene FTO, Gly103Asp, Arg96Pro, Tyr295Cys, and Arg322Gln, with an apparent connection to the disease condition. Modulation of demethylation activity by phytomolecule scanning explains the hepatoprotective action of molecules. The current investigation also suggested that predicted mutations did not affect the binding ability of three polyphenols: rosamarinic acid, resveratrol, and capsaicin. CONCLUSION: This study showed that the predicted mutations in FTO did not affect the binding of three polyphenols. Thus, these three molecules can significantly aid drug development against FTO and NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Resveratrol/farmacologia , Estudo de Associação Genômica Ampla , Capsaicina/metabolismo , Fígado/metabolismo , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
20.
Transl Oncol ; 27: 101579, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332600

RESUMO

MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two relevant classes of non-coding RNAs (ncRNAs) that play a pivotal role in a number of molecular processes through different epigenetic regulatory mechanisms of gene expression. As a matter of fact, the altered expression of these types of RNAs leads to the development and progression of a varied range of multifactorial human diseases. Several recent reports elucidated that miRNA and lncRNAs have been implicated in pancreatic cancer (PC). For instance, dysregulation of such ncRNAs has been found to be associated with chemoresistance, apoptosis, autophagy, cell differentiation, tumor suppression, tumor growth, cancer cell proliferation, migration, and invasion in PC. Moreover, several aberrantly expressed miRNAs and lncRNAs have the potential to be used as biomarkers for accurate PC diagnosis. Additionally, miRNAs and lncRNAs are considered as promising clinical targets for PC. Therefore, in this review, we discuss recent experimental evidence regarding the clinical implications of miRNAs and lncRNAs in the pathophysiology of PC, their future potential, as well as the challenges that have arisen in this field of study in order to drive forward the design of ncRNA-based diagnostics and therapeutics for PC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA