Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 27(2): 255-264, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552009

RESUMO

A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII's preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.


Assuntos
Carbamatos/química , Glutamato Carboxipeptidase II/antagonistas & inibidores , Inibidores de Proteases/química , Ureia/análogos & derivados , Animais , Carbamatos/síntese química , Carbamatos/metabolismo , Domínio Catalítico , Linhagem Celular , Drosophila/genética , Ensaios Enzimáticos , Glutamato Carboxipeptidase II/química , Glutamato Carboxipeptidase II/metabolismo , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Ligação Proteica , Teoria Quântica , Estereoisomerismo , Ureia/síntese química , Ureia/química , Ureia/metabolismo
2.
J Med Chem ; 62(1): 46-59, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29969024

RESUMO

Kidney-type glutaminase (GLS), the first enzyme in the glutaminolysis pathway, catalyzes the hydrolysis of glutamine to glutamate. GLS was found to be upregulated in many glutamine-dependent cancer cells. Therefore, selective inhibition of GLS has gained substantial interest as a therapeutic approach targeting cancer metabolism. Bis-2-[5-(phenylacetamido)-1,3,4-thiadiazol-2-yl]ethyl sulfide (BPTES), despite its poor physicochemical properties, has served as a key molecular template in subsequent efforts to identify more potent and drug-like allosteric GLS inhibitors. This review article provides an overview of the progress made to date in the development of GLS inhibitors and highlights the remarkable transformation of the unfavorable lead into "druglike" compounds guided by systematic SAR studies.


Assuntos
Inibidores Enzimáticos/química , Glutaminase/antagonistas & inibidores , Regulação Alostérica , Sítio Alostérico , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Glutaminase/metabolismo , Humanos , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Sulfetos/química , Sulfetos/metabolismo , Tiadiazóis/química , Tiadiazóis/metabolismo
3.
Oncotarget ; 7(36): 57943-57954, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27462863

RESUMO

Cancer cells employ glutaminolysis to provide a source of intermediates for their upregulated biosynthetic needs. Glutaminase, which catalyzes the conversion of glutamine to glutamate, is gaining increasing attention as a potential drug target. Small-molecule inhibitors such as BPTES and CB-839, which target the allosteric site of glutaminase with high specificity, demonstrate immense promise as anti-tumor drugs. Here, we report the study of a new BPTES analog, N,N'-(5,5'-(trans-cyclohexane-1,3-diyl)bis(1,3,4-tiadiazole-5,2-diyl))bis(2-phenylacetamide) (trans-CBTBP), and compared its inhibitory effect against that of CB-839 and BPTES. We show that CB-839 has a 30- and 50-fold lower IC50 than trans-CBTBP and BPTES, respectively. To explore the structural basis for the differences in their inhibitory efficacy, we solved the complex structures of cKGA with 1S, 3S-CBTBP and CB-839. We found that CB-839 produces a greater degree of interaction with cKGA than 1S, 3S-CBTBP or BPTES. The results of this study will facilitate the rational design of new KGA inhibitors to better treat glutamine-addicted cancers.


Assuntos
Antineoplásicos/farmacologia , Glutaminase/antagonistas & inibidores , Glutaminase/química , Neoplasias Renais/enzimologia , Rim/enzimologia , Sulfetos/química , Tiadiazóis/química , Sítio Alostérico , Antineoplásicos/química , Proliferação de Células , Células HEK293 , Humanos , Concentração Inibidora 50 , Conformação Molecular , Ligação Proteica , Conformação Proteica
4.
J Med Chem ; 55(23): 10551-63, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23151085

RESUMO

Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) is a potent and selective allosteric inhibitor of kidney-type glutaminase (GLS) that has served as a molecular probe to determine the therapeutic potential of GLS inhibition. In an attempt to identify more potent GLS inhibitors with improved drug-like molecular properties, a series of BPTES analogs were synthesized and evaluated. Our structure-activity relationship (SAR) studies revealed that some truncated analogs retained the potency of BPTES, presenting an opportunity to improve its aqueous solubility. One of the analogs, N-(5-{2-[2-(5-amino-[1,3,4]thiadiazol-2-yl)-ethylsulfanyl]-ethyl}-[1,3,4]thiadiazol-2-yl)-2-phenyl-acetamide 6, exhibited similar potency and better solubility relative to BPTES and attenuated the growth of P493 human lymphoma B cells in vitro as well as in a mouse xenograft model.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutaminase/antagonistas & inibidores , Sulfetos/química , Sulfetos/farmacologia , Tiadiazóis/química , Tiadiazóis/farmacologia , Inibidores Enzimáticos/síntese química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Sulfetos/síntese química , Tiadiazóis/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA