Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(2): 345-360, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045343

RESUMO

Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.


Assuntos
Cistos do Sistema Nervoso Central/genética , Defeitos Congênitos da Glicosilação/genética , Hamartoma/genética , Deficiência Intelectual/genética , Oligossacarídeos/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Polimicrogiria/genética , alfa-Manosidase/genética , Adolescente , Alelos , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Linhagem Celular Tumoral , Cistos do Sistema Nervoso Central/metabolismo , Cistos do Sistema Nervoso Central/patologia , Vermis Cerebelar/metabolismo , Vermis Cerebelar/patologia , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Feminino , Feto , Glicosilação , Hamartoma/metabolismo , Hamartoma/patologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , Manose/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patologia , Língua/metabolismo , Língua/patologia , alfa-Manosidase/deficiência
2.
Biochim Biophys Acta Gen Subj ; 1862(3): 394-402, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29108953

RESUMO

The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2+/Mn2+ homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2+ concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2+ confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2+. The use of Pmr1p mutants either defective for Ca2+ or Mn2+ transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2+ requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2+ inside the Golgi lumen when Pmr1p exclusively transports Ca2+. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2+ sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2+/Ca2+transport.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Complexo de Golgi/metabolismo , Manganês/metabolismo , Mananas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Canais de Cálcio/química , Canais de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Sequência Conservada , Glicosilação , Transporte de Íons , Chaperonas Moleculares/metabolismo , Monossacarídeos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Exp Med ; 214(12): 3707-3729, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29127204

RESUMO

The biogenesis of the multi-subunit vacuolar-type H+-ATPase (V-ATPase) is initiated in the endoplasmic reticulum with the assembly of the proton pore V0, which is controlled by a group of assembly factors. Here, we identify two hemizygous missense mutations in the extracellular domain of the accessory V-ATPase subunit ATP6AP2 (also known as the [pro]renin receptor) responsible for a glycosylation disorder with liver disease, immunodeficiency, cutis laxa, and psychomotor impairment. We show that ATP6AP2 deficiency in the mouse liver caused hypoglycosylation of serum proteins and autophagy defects. The introduction of one of the missense mutations into Drosophila led to reduced survival and altered lipid metabolism. We further demonstrate that in the liver-like fat body, the autophagic dysregulation was associated with defects in lysosomal acidification and mammalian target of rapamycin (mTOR) signaling. Finally, both ATP6AP2 mutations impaired protein stability and the interaction with ATP6AP1, a member of the V0 assembly complex. Collectively, our data suggest that the missense mutations in ATP6AP2 lead to impaired V-ATPase assembly and subsequent defects in glycosylation and autophagy.


Assuntos
Autofagia , Proteínas de Drosophila/genética , Genes Ligados ao Cromossomo X , Proteínas de Membrana/genética , Mutação/genética , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/genética , ATPases Vacuolares Próton-Translocadoras/genética , Adolescente , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Sanguíneas/metabolismo , Encéfalo/embriologia , Encéfalo/patologia , Cútis Laxa/complicações , Cútis Laxa/patologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Degradação Associada com o Retículo Endoplasmático , Fibroblastos/patologia , Glicosilação , Humanos , Lactente , Lipídeos/química , Fígado/patologia , Hepatopatias/complicações , Hepatopatias/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , ATPases Translocadoras de Prótons/deficiência , ATPases Translocadoras de Prótons/metabolismo , Transtornos Psicomotores/complicações , Transtornos Psicomotores/patologia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/deficiência , Adulto Jovem
4.
Biochem J ; 474(9): 1481-1493, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28270545

RESUMO

TMEM165 deficiencies lead to one of the congenital disorders of glycosylation (CDG), a group of inherited diseases where the glycosylation process is altered. We recently demonstrated that the Golgi glycosylation defect due to TMEM165 deficiency resulted from a Golgi manganese homeostasis defect and that Mn2+ supplementation was sufficient to rescue normal glycosylation. In the present paper, we highlight TMEM165 as a novel Golgi protein sensitive to manganese. When cells were exposed to high Mn2+ concentrations, TMEM165 was degraded in lysosomes. Remarkably, while the variant R126H was sensitive upon manganese exposure, the variant E108G, recently identified in a novel TMEM165-CDG patient, was found to be insensitive. We also showed that the E108G mutation did not abolish the function of TMEM165 in Golgi glycosylation. Altogether, the present study identified the Golgi protein TMEM165 as a novel Mn2+-sensitive protein in mammalian cells and pointed to the crucial importance of the glutamic acid (E108) in the cytosolic ELGDK motif in Mn2+-induced degradation of TMEM165.


Assuntos
Complexo de Golgi/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Manganês/farmacologia , Proteínas de Membrana/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Antiporters , Western Blotting , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Transporte de Cátions , Relação Dose-Resposta a Droga , Técnicas de Silenciamento de Genes , Glutamatos/genética , Glutamatos/metabolismo , Glicosilação/efeitos dos fármacos , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/genética , Microscopia Confocal , Mutação , Proteólise/efeitos dos fármacos
5.
Biochim Biophys Acta Gen Subj ; 1861(4): 737-748, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28088503

RESUMO

BACKGROUND: Defects in TMEM165 gene cause a type-II Congenital Disorder of Glycosylation affecting Golgi glycosylation processes. TMEM165 patients exhibit psychomotor retardation, important osteoporosis, scoliosis, irregular epiphyses and thin bone cortex. TMEM165 protein is highly conserved in evolution and belongs to the family of UPF0016 membrane proteins which could be an unique group of Ca2+/H+ antiporters regulating Ca2+ and pH homeostasis and mainly localized in the Golgi apparatus. METHODS: RT-PCR from human brain tissues revealed TMEM165 splice-transcript variants. mRNA expression was analyzed by RT-Q-PCR. Expression plasmids allowed us to visualize isoform proteins and their subcellular localization. Their functions on glycosylation were achieved by looking at the gel mobility of highly glycosylated proteins in cells overexpressing isoforms. RESULTS: In this study, we highlight, as previously shown for other ion channels, the existence of TMEM165 splice-transcripts isoforms, in particular the Short-Form (SF) and the Long-Form (LF) transcripts, leading to a 129 aa and 259 aa protein isoform, respectively. These proteins both localize in the endoplasmic reticulum and have different effects on glycosylation compared to the wild-type protein (324 aa). We also point out that the SF is expressed at low levels in all human cells and tissues checked, excepted in brain, and forms homodimer. The LF was only expressed in the temporal lobe of human brain. GENERAL SIGNIFICANCE: The finding of numerous splice variants could lead to a family of TMEM165 isoforms. This family of TMEM165 splice transcripts could participate in the fine regulation of TMEM165 isoforms' functions and localizations.


Assuntos
Processamento Alternativo/genética , Defeitos Congênitos da Glicosilação/genética , Variação Genética/genética , Proteínas de Membrana/genética , Sequência de Aminoácidos , Antiporters , Encéfalo/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Glicosilação , Complexo de Golgi/genética , Células HeLa , Humanos , Isoformas de Proteínas/genética , RNA Mensageiro/genética
6.
Glycobiology ; 21(7): 864-76, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21062782

RESUMO

Initially described by Jaeken et al. in 1980, congenital disorders of glycosylation (CDG) is a rapidly expanding group of human multisystemic disorders. To date, many CDG patients have been identified with deficiencies in the conserved oligomeric Golgi (COG) complex which is a complex involved in the vesicular intra-Golgi retrograde trafficking. Composed of eight subunits that are organized in two lobes, COG subunit deficiencies have been associated with Golgi glycosylation abnormalities. Analysis of the total serum N-glycans of COG-deficient CDG patients demonstrated an overall decrease in terminal sialylation and galactosylation. According to the mutated COG subunits, differences in late Golgi glycosylation were observed and led us to address the question of an independent role and requirement for each of the two lobes of the COG complex in the stability and localization of late terminal Golgi glycosylation enzymes. For this, we used a small-interfering RNAs strategy in HeLa cells stably expressing green fluorescent protein (GFP)-tagged ß1,4-galactosyltransferase 1 (B4GALT1) and α2,6-sialyltransferase 1 (ST6GAL1), two major Golgi glycosyltransferases involved in late Golgi N-glycosylation. Using fluorescent lectins and flow cytometry analysis, we clearly demonstrated that depletion of both lobes was associated with deficiencies in terminal Golgi N-glycosylation. Lobe A depletion resulted in dramatic changes in the Golgi structure, whereas lobe B depletion severely altered the stability of B4GALT1 and ST6GAL1. Only MG132 was able to rescue their steady-state levels, suggesting that B4GALT1- and ST6GAL1-induced degradation are likely the consequence of an accumulation in the endoplasmic reticulum (ER), followed by a retrotranslocation into the cytosol and proteasomal degradation. All together, our results suggest differential effects of lobe A and lobe B for the localization/stability of B4GALT1 and ST6GAL1. Lobe B would be crucial in preventing these two Golgi glycosyltransferases from inappropriate retrograde trafficking to the ER, whereas lobe A appears to be essential for maintaining the overall Golgi structure.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antígenos CD/metabolismo , Galactosiltransferases/metabolismo , Complexo de Golgi/fisiologia , Sialiltransferases/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Antígenos CD/genética , Western Blotting , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Citometria de Fluxo , Imunofluorescência , Galactosiltransferases/antagonistas & inibidores , Galactosiltransferases/genética , Glicosilação , Complexo de Golgi/química , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Transporte Proteico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sialiltransferases/antagonistas & inibidores , Sialiltransferases/genética
7.
J Virol ; 78(22): 12591-602, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15507646

RESUMO

The immature flavivirus particle contains two envelope proteins, prM and E, that are associated as a heterodimer. Virion morphogenesis of the flaviviruses occurs in association with endoplasmic reticulum (ER) membranes, suggesting that there should be accumulation of the virion components in this compartment. This also implies that ER localization signals must be present in the flavivirus envelope proteins. In this work, we looked for potential subcellular localization signals in the yellow fever virus envelope proteins. Confocal immunofluorescence analysis of the subcellular localization of the E protein in yellow fever virus-infected cells indicated that this protein accumulates in the ER. Similar results were obtained with cells expressing only prM and E. Chimeric proteins containing the ectodomain of CD4 or CD8 fused to the transmembrane domains of prM or E were constructed, and their subcellular localization was studied by confocal immunofluorescence and by analyzing the maturation of their associated glycans. Although a small fraction was detected in the ER-to-Golgi intermediate and Golgi compartments, these chimeric proteins were located mainly in the ER. The C termini of prM and E form two antiparallel transmembrane alpha-helices. Interestingly, the first transmembrane passage contains enough information for ER localization. Taken altogether, these data indicate that, besides their role as membrane anchors, the transmembrane domains of yellow fever virus envelope proteins are ER retention signals. In addition, our data show that the mechanisms of ER retention of the flavivirus and hepacivirus envelope proteins are different.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas do Envelope Viral/metabolismo , Vírus da Febre Amarela/química , Sequência de Aminoácidos , Antígenos CD4/análise , Membrana Celular/química , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/análise , Proteínas do Envelope Viral/química
8.
Glycobiology ; 12(2): 95-101, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11886842

RESUMO

The addition of N-linked glycans to a protein is catalyzed by oligosaccharyltransferase, an enzyme closely associated with the translocon. N-glycans are believed to be transferred as the protein is being synthesized and cotranslationally translocated in the lumen of the endoplasmic reticulum. We used a mannosylphosphoryldolichol-deficient Chinese hamster ovary mutant cell line (B3F7 cells) to study the temporal regulation of N-linked core glycosylation of hepatitis C virus envelope protein E1. In this cell line, truncated Glc(3)Man(5)GlcNAc(2) oligosaccharides are transferred onto nascent proteins. Pulse-chase analyses of E1 expressed in B3F7 cells show that the N-glycosylation sites of E1 are slowly occupied until up to 1 h after protein translation is completed. This posttranslational glycosylation of E1 indicates that the oligosaccharyltransferase has access to this protein in the lumen of the endoplasmic reticulum for at least 1 h after translation is completed. Comparisons with the N-glycosylation of other proteins expressed in B3F7 cells indicate that the posttranslational glycosylation of E1 is likely due to specific folding features of this acceptor protein.


Assuntos
Dolicol Monofosfato Manose/metabolismo , Retículo Endoplasmático/metabolismo , Antígenos da Hepatite C/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas do Envelope Viral/metabolismo , Animais , Células CHO/metabolismo , Cricetinae , Glicosilação , Cinética , Testes de Precipitina , Ligação Proteica , Dobramento de Proteína , Sindbis virus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA