Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37107234

RESUMO

Thymoquinone (TQ), an active compound from Nigella sativa seeds, is often described as a pharmacologically relevant compound with antioxidative properties, while the synthesis of TQ in the plant via oxidations makes it inapplicable for scavenging radicals. Therefore, the present study was designed to reassess the radical scavenging properties of TQ and explore a potential mode of action. The effects of TQ were studied in models with mitochondrial impairment and oxidative stress induced by rotenone in N18TG2 neuroblastoma cells and rotenone/MPP+ in primary mesencephalic cells. Tyrosine hydroxylase staining revealed that TQ significantly protected dopaminergic neurons and preserved their morphology under oxidative stress conditions. Quantification of the formation of superoxide radicals via electron paramagnetic resonance showed an initial increase in the level of superoxide radicals in the cell by TQ. Measurements in both cell culture systems revealed that the mitochondrial membrane potential was tendentially lowered, while ATP production was mostly unaffected. Additionally, the total ROS levels were unaltered. In mesencephalic cell culture under oxidative stress conditions, caspase-3 activity was decreased when TQ was administered. On the contrary, TQ itself tremendously increased the caspase-3 activity in the neuroblastoma cell line. Evaluation of the glutathione level revealed an increased level of total glutathione in both cell culture systems. Therefore, the enhanced resistance against oxidative stress in primary cell culture might be a consequence of a lowered caspase-3 activity combined with an increased pool of reduced glutathione. The described anti-cancer ability of TQ might be a result of the pro-apoptotic condition in neuroblastoma cells. Our study provides evidence that TQ has no direct scavenging effect on superoxide radicals.

2.
Front Med (Lausanne) ; 9: 785285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372445

RESUMO

Background: Abdominal surgery is an efficient treatment of intra-abdominal sepsis. Surgical trauma and peritoneal infection lead to the activation of multiple pathological pathways. The liver is particularly susceptible to injury under septic conditions. Liver function is impaired when pathological conditions induce endoplasmic reticulum (ER) stress. ER stress triggers the unfolded protein response (UPR), aiming at restoring ER homeostasis, or inducing cell death. In order to translate basic knowledge on ER function into the clinical setting, we aimed at dissecting the effect of surgery and peritoneal infection on the progression of ER stress/UPR and inflammatory markers in the liver in a clinically relevant experimental animal model. Methods: Wistar rats underwent laparotomy followed by colon ascendens stent peritonitis (CASP) or surgery (sham) only. Liver damage (aspartate aminotransferase (AST), alanine aminotransferase (ALT) and De Ritis values), inflammatory and UPR markers were assessed in livers at 24, 48, 72, and 96 h postsurgery. Levels of inflammatory (IL-6, TNF-α, iNOS, and HO-1), UPR (XBP1, GRP78, CHOP), and apoptosis (BAX/Bcl-XL) mRNA were determined by qPCR. Splicing of XBP1 (XBP1s) was analyzed by gel electrophoresis, p-eIF2α and GRP78 protein levels using the western blots. Results: Aspartate aminotransferase levels were elevated 24 h after surgery and thereafter declined with different kinetics in sham and CASP groups. Compared with sham De Ritis ratios were significantly higher in the CASP group, at 48 and 96 h. CASP induced an inflammatory response after 48 h, evidenced by elevated levels of IL-6, TNF-α, iNOS, and HO-1. In contrast, UPR markers XBP1s, p-eIF2α, GRP78, XBP1, and CHOP did not increase in response to infection but paralleled the kinetics of AST and De Ritis ratios. We found that inflammatory markers were predominantly associated with CASP, while UPR markers were associated with surgery. However, in the CASP group, we found a stronger correlation between XBP1s, XBP1 and GRP78 with damage markers, suggesting a synergistic influence of inflammation on UPR in our model. Conclusion: Our results indicate that independent mechanisms induce ER stress/UPR and the inflammatory response in the liver. While peritoneal infection predominantly triggers inflammatory responses, the conditions associated with organ damage are predominant triggers of the hepatic UPR.

3.
Front Med (Lausanne) ; 7: 513, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015090

RESUMO

Heme oxygenase (HO) and biliverdin reductase (BVR) activities are important for neuronal function and redox homeostasis. Resuscitation from cardiac arrest (CA) frequently results in neuronal injury and delayed neurodegeneration that typically affect vulnerable brain regions, primarily hippocampus (Hc) and motor cortex (mC), but occasionally also striatum and cerebellum. We questioned whether these delayed effects are associated with changes of the HO/BVR system. We therefore analyzed the activities of HO and BVR in the brain regions Hc, mC, striatum and cerebellum of rats subjected to ventricular fibrillation CA (6 min or 8 min) after 2 weeks following resuscitation, or sham operation. From all investigated regions, only Hc and mC showed significantly decreased HO activities, while BVR activity was not affected. In order to find an explanation for the changed HO activity, we analyzed protein abundance and mRNA expression levels of HO-1, the inducible, and HO-2, the constitutively expressed isoform, in the affected regions. In both regions we found a tendency for a decreased immunoreactivity of HO-2 using immunoblots and immunohistochemistry. Additionally, we investigated the histological appearance and the expression of markers indicative for activation of microglia [tumor necrosis factor receptor type I (TNFR1) mRNA and immunoreactivity for ionized calcium-binding adapter molecule 1 (Iba1])], and activation of astrocytes [immunoreactivity for glial fibrillary acidic protein (GFAP)] in Hc and mC. Morphological changes were detected only in Hc displaying loss of neurons in the cornu ammonis 1 (CA1) region, which was most pronounced in the 8 min CA group. In this region also markers indicating inflammation and activation of pro-death pathways (expression of HO-1 and TNFR1 mRNA, as well as Iba1 and GFAP immunoreactivity) were upregulated. Since HO products are relevant for maintaining neuronal function, our data suggest that neurodegenerative processes following CA may be associated with a decreased capacity to convert heme into HO products in particularly vulnerable brain regions.

4.
Antioxidants (Basel) ; 9(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033040

RESUMO

Phytocannabinoids protect neurons against stressful conditions, possibly via the heme oxygenase (HO) system. In cultures of primary mesencephalic neurons and neuroblastoma cells, we determined the capability of cannabidiol (CBD) and tetrahydrocannabinol (THC) to counteract effects elicited by complex I-inhibitor rotenone by analyzing neuron viability, morphology, gene expression of IL6, CHOP, XBP1, HO-1 (stress response), and HO-2, and in vitro HO activity. Incubation with rotenone led to a moderate stress response but massive degeneration of dopaminergic neurons (DN) in primary mesencephalic cultures. Both phytocannabinoids inhibited in-vitro HO activity, with CBD being more potent. Inhibition of the enzyme reaction was not restricted to neuronal cells and occurred in a non-competitive manner. Although CBD itself decreased viability of the DNs (from 100% to 78%), in combination with rotenone, it moderately increased survival from 28.6% to 42.4%. When the heme degradation product bilirubin (BR) was added together with CBD, rotenone-mediated degeneration of DN was completely abolished, resulting in approximately the number of DN determined with CBD alone (77.5%). Using N18TG2 neuroblastoma cells, we explored the neuroprotective mechanism underlying the combined action of CBD and BR. CBD triggered the expression of HO-1 and other cell stress markers. Co-treatment with rotenone resulted in the super-induction of HO-1 and an increased in-vitro HO-activity. Co-application of BR completely mitigated the rotenone-induced stress response. Our findings indicate that CBD induces HO-1 and increases the cellular capacity to convert heme when stressful conditions are met. Our data further suggest that CBD via HO may confer full protection against (oxidative) stress when endogenous levels of BR are sufficiently high.

5.
Biochim Biophys Acta Bioenerg ; 1859(9): 925-931, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777685

RESUMO

BACKGROUND AND PURPOSE: Based on the fact that traumatic brain injury is associated with mitochondrial dysfunction we aimed at localization of mitochondrial defect and attempted to correct it by thiamine. EXPERIMENTAL APPROACH: Interventional controlled experimental animal study was used. Adult male Sprague-Dawley rats were subjected to lateral fluid percussion traumatic brain injury. Thiamine was administered 1 h prior to trauma; cortex was extracted for analysis 4 h and 3 d after trauma. KEY RESULTS: Increased expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor receptor 1 (TNF-R1) by 4 h was accompanied by a decrease in mitochondrial respiration with glutamate but neither with pyruvate nor succinate. Assays of TCA cycle flux-limiting 2-oxoglutarate dehydrogenase complex (OGDHC) and functionally linked enzymes (glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, malate dehydrogenase and malic enzyme) indicated that only OGDHC activity was decreased. Application of the OGDHC coenzyme precursor thiamine rescued the activity of OGDHC and restored mitochondrial respiration. These effects were not mediated by changes in the expression of the OGDHC sub-units (E1k and E3), suggesting post-translational mechanism of thiamine effects. By the third day after TBI, thiamine treatment also decreased expression of TNF-R1. Specific markers of unfolded protein response did not change in response to thiamine. CONCLUSION AND IMPLICATIONS: Our data point to OGDHC as a major site of damage in mitochondria upon traumatic brain injury, which is associated with neuroinflammation and can be corrected by thiamine. Further studies are required to evaluate the pathological impact of these findings in clinical settings.


Assuntos
Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/fisiologia , Inflamação Neurogênica/prevenção & controle , Tiamina/farmacologia , Animais , Metabolismo Energético , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/genética , Masculino , Mitocôndrias/efeitos dos fármacos , Inflamação Neurogênica/etiologia , Inflamação Neurogênica/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Complexo Vitamínico B/farmacologia
6.
Res Vet Sci ; 97(2): 244-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25151433

RESUMO

Aim of this study was to characterize the effects of an ochratoxin A (181 ± 34 ng/g) contaminated diet on growth performances, blood parameters, systemic cytokine levels, cell stress markers and reactivity of immune system of weaned pigs. Growth performance was not affected by OTA consumption even if OTA levels increased in plasma, kidney and liver. OTA diminished the protein content in the serum and increased levels of TNF-alpha and IL-10 in plasma. HO-1 mRNA, indicative for cells stress, was decreased in the kidney but increased in the liver. Additionally, whole blood of the animals of the OTA-group showed a decreased capacity to respond with cytokine expression (mRNA and protein) to ex vivo challenge with LPS. In conclusion our findings indicate that chronic ingestion with OTA-contaminated feed, even at low level, is hazardous for the animal and virtually for human health, pig being an excellent model for human.


Assuntos
Contaminação de Alimentos , Doenças Transmitidas por Alimentos/veterinária , Inflamação/veterinária , Ocratoxinas/toxicidade , Estresse Fisiológico/fisiologia , Sus scrofa/fisiologia , Doenças dos Suínos/fisiopatologia , Animais , Biomarcadores/sangue , Carcinógenos/farmacologia , Carcinógenos/toxicidade , Dieta/efeitos adversos , Doenças Transmitidas por Alimentos/metabolismo , Doenças Transmitidas por Alimentos/fisiopatologia , Heme Oxigenase (Desciclizante)/metabolismo , Sistema Imunitário/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/fisiopatologia , Interleucina-10/sangue , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ocratoxinas/administração & dosagem , Ocratoxinas/farmacologia , Sus scrofa/crescimento & desenvolvimento , Suínos , Doenças dos Suínos/metabolismo , Fator de Necrose Tumoral alfa/sangue
7.
Shock ; 36(5): 501-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21841538

RESUMO

Hemorrhagic-traumatic shock (HTS) followed by reperfusion induces heme oxygenase (HO) 1. Free iron (Fe2+) may cause oxidative stress, if not adequately sequestered. We aimed to characterize HO-1-mediated effects on Fe2+ levels in liver and transferrin-bound iron (TFBI) in plasma following HTS, including laparotomy, bleeding, and inadequate and adequate reperfusion. Anesthetized rats showed upregulated HO-1 mRNA at 40 min after HTS, which was followed by increased HO activity at 3 h after shock. Fe2+ levels were transiently increased at 40 min after shock, a time point when HO activity was not affected yet. Levels of plasma TFBI were higher in HTS animals, showing the highest levels at 40 min after shock, and decreased thereafter. In addition, we modulated HO activity 6 h before HTS by administering an inhibitor (zinc-protoporphyrin IX) or an activator (hemin) of HO. At 18 h after HTS in all shock groups, HO activity was increased, the highest being in the hemin-pretreated group. The zinc-protoporphyrin IX-treated HTS animals showed increased HO-1 mRNA and Fe2+ levels in the liver compared with the untreated HTS animals. Transferrin-bound iron levels were affected by pharmacological modulation before shock. All animals undergoing HTS displayed increased TFBI levels after reperfusion; however, in animals pretreated with hemin, TFBI levels increased less. Our data indicate that increase in Fe2+ levels in liver and plasma early after HTS is not mediated by HO-1 upregulation, but possibly reflects an increased mobilization from internal iron stores or increased cell damage. Thus, upregulation of HO activity by hemin does not increase Fe2+ levels following HTS and reperfusion.


Assuntos
Heme Oxigenase-1/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Choque Hemorrágico/metabolismo , Animais , Western Blotting , Heme Oxigenase-1/genética , Fígado/enzimologia , Masculino , Ratos , Ratos Sprague-Dawley , Choque Hemorrágico/enzimologia , Choque Hemorrágico/fisiopatologia
8.
J Neural Transm (Vienna) ; 117(1): 5-12, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19707849

RESUMO

Green tea polyphenol epigallocatechin-3-gallate (EGCG) is reported to have antioxidant abilities and to counteract beneficially mitochondrial impairment and oxidative stress. The present study was designed to investigate neuroprotective effects of EGCG on rotenone-treated dissociated mesencephalic cultures and organotypic striatal cultures. Rotenone is a potent inhibitor of complex I of the respiratory chain, which in vitro causes pathological and neurochemical characteristics of diseases in which mitochondrial impairment is involved, e.g., Parkinson's disease. Treatment with EGCG (0.1, 1, 10 muM) alone had no significant effects on mesencephalic cultures. In striatal slice cultures, EGCG led to a significant increase of propidium iodide (PI) uptake and 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM), but not dihydroethidium (DHE) fluorescence intensity. Rotenone (20 nM on the eighth DIV for 48 h) significantly decreased the numbers and the neurite lengths of TH ir neurons by 23 and 34% in dissociated mesencephalic cell cultures compared to untreated controls. Exposure of striatal slices to rotenone (0.5 mM for 48 h) significantly increased PI uptake, and DAF-FM and DHE fluorescence intensities by 41 and 136 and 19%, respectively, compared to controls. Against rotenone, in dissociated mesencephalic cultures, EGCG produced no significant effect on either the number or neurite lengths of THir neurons compared to rotenone-treated cultures, but EGCG significantly decreased PI uptake by 19% and DAF-FM fluorescence intensity by 19 and 58%, respectively, compared to increase in rotenone-exposed striatal slices. On the other hand, EGCG did not affect superoxide (O(2) (-)) formation as detected with DHE. These data indicate that EGCG slightly protects striatal slices by counteracting nitric oxide (NO(.)) production by rotenone. In conclusion, EGCG partially protects striatal slices but not dissociated cells against rotenone toxicity.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Catequina/análogos & derivados , Fármacos Neuroprotetores/farmacologia , Animais , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/fisiopatologia , Catequina/administração & dosagem , Catequina/farmacologia , Contagem de Células , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/lesões , Corpo Estriado/fisiopatologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/lesões , Mesencéfalo/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/administração & dosagem , Óxido Nítrico/metabolismo , Rotenona , Superóxidos/metabolismo , Técnicas de Cultura de Tecidos , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA