Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768589

RESUMO

The role of metallic nano- and microparticles in the development of inflammation has not yet been investigated. Soft tissue biopsy specimens of the bone bed taken during surgical revisions, as well as supernatants obtained from the surface of the orthopedic structures and dental implants (control), were examined. Investigations were performed using X-ray microtomography, X-ray fluorescence analysis, and scanning electron microscopy. Histological studies of the bone bed tissues were performed. Nanoscale and microscale metallic particles were identified as participants in the inflammatory process in tissues. Supernatants containing nanoscale particles were obtained from the surfaces of 20 units of new dental implants. Early and late apoptosis and necrosis of immunocompetent cells after co-culture and induction by lipopolysaccharide and human venous blood serum were studied in an experiment with staging on the THP-1 (human monocytic) cell line using visualizing cytometry. As a result, it was found that nano- and microparticles emitted from the surface of the oxide layer of medical devices impregnated soft tissue biopsy specimens. By using different methods to analyze the cell-molecule interactions of nano- and microparticles both from a clinical perspective and an experimental research perspective, the possibility of forming a chronic immunopathological endogenous inflammatory process with an autoimmune component in the tissues was revealed.


Assuntos
Implantes Dentários , Humanos , Microscopia Eletrônica de Varredura , Monócitos , Linhagem Celular , Titânio/análise , Propriedades de Superfície
2.
Med Phys ; 50(3): 1601-1613, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36309985

RESUMO

BACKGROUND: The formation of concrements in human pineal gland (PG) is a physiological process and, according to many researchers, is associated with the involution of PG structures. The majority of scientific publications concern progressive calcification of PG, leaving out studies on the destruction of already formed calcified concrements. Our study fills the gap in knowledge about calcified zones destruction in PG in normal aging and neuropathological conditions, which has not been addressed until now. PURPOSE: Our objective is to gain insight into human PG tissue impairment in both normal aging and neurodegenerative conditions. X-ray phase-contrast tomography (XPCT) allowed us to study PG tissue degeneration at high spatial resolution and, for the first time, to examine the damaged PG concrements in detail. Our research finding could potentially enhance the understanding of the PG involvement in the process of aging as well as in Alzheimer's disease (AD) and vascular dementia (VD). METHODS: The research was carried out on human PG autopsy material in normal aging, VD, and AD conditions. Laboratory-based micro-computed tomography (micro-CT) was used to collect and evaluate samples of native, uncut, and unstained PG with different degrees of pineal calcification. The detailed high-resolution 3D images of the selected PGs were produced using synchrotron-based XPCT. Histology and immunohistochemistry of soft PG tissue confirmed XPCT results. RESULTS: We performed via micro-CT the evaluation of the morphometric parameters of PG such as total sample volume, calcified concrements volume, and percentage of concrements in the total volume of the sample. XPCT imaging revealed high-resolution details of age-related PG alteration. In particular, we noted signs of moderate degradation of concrements in some PGs from elderly donors. In addition, our analysis revealed noticeable degenerative change in both concrements and soft tissue of PGs with neuropathology. In particular, we observed a hollow core and separated layers as well as deep ragged cracks in PG concrements of AD and VD samples. In parenchyma of some samples, we detected wide pinealocyte-free fluid-filled areas adjacent to the calcified zones. CONCLUSION: The present work provides the basis for future scientific research focused on the dynamic nature of PG calcium deposits and PG soft tissue in normal aging and neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Calcinose , Doenças Neurodegenerativas , Glândula Pineal , Humanos , Idoso , Glândula Pineal/diagnóstico por imagem , Glândula Pineal/metabolismo , Glândula Pineal/patologia , Microtomografia por Raio-X , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Calcinose/diagnóstico por imagem , Calcinose/patologia
3.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555457

RESUMO

The purpose of this study was to provide an immuno-mediated substantiation of the etiopathogenesis of mucositis and peri-implantitis based on the results of experimental, laboratory and clinical studies. The biopsy material was studied to identify impregnated nanoscale and microscale particles in the structure of pathological tissues by using X-ray microtomography and X-ray fluorescence analyses. Electron microscopy with energy-dispersive analysis identified the composition of supernatants containing nanoscale metal particles obtained from the surfaces of dental implants. The parameters of the nanoscale particles were determined by dynamic light scattering. Flow cytometry was used to study the effect of nanoscale particles on the ability to induce the activation and apoptosis of immunocompetent cells depending on the particles' concentrations during cultivation with the monocytic cell line THP-1 with the addition of inductors. An analysis of the laboratory results suggested the presence of dose-dependent activation, as well as early and late apoptosis of the immunocompetent cells. Activation and early and late apoptosis of a monocytic cell line when THP-1 was co-cultured with nanoscale metal particles in supernatants were shown for the first time. When human venous blood plasma was added, both activation and early and late apoptosis had a dose-dependent effect and differed from those of the control groups.


Assuntos
Implantes Dentários , Mucosite , Peri-Implantite , Humanos , Peri-Implantite/metabolismo , Inflamação
4.
Dent Mater ; 38(6): 924-934, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35289284

RESUMO

OBJECTIVES: To study the oxide layer stability of certified dental implants of system "P", made based on TiO2 alloy with carbon coating. To perform a comparative statistical analysis of the obtained data with the available data for the dental implants of systems "A" and "B". METHODS: X-ray microtomography and X-ray fluorescence analysis were used to study soft tissue biopsy specimens. Supernatants were studied by dynamic light scattering and transmission electron microscopy when simulating free emission of nanoscale metal oxide particles from the surface of dental implants as well as when simulating physical loading. A comparative analysis of three parameters of nanoscale particles was performed by statistical data analysis. The surface of the "P" system dental implant with surface treatment was analyzed by scanning electron microscopy. RESULTS: Both free emission of nanoscale oxide layer particles and yield of nano- and microscale particles during simulation of physical load were confirmed. Statistically significant differences were noted in a comparative analysis of the size and frequency of occurrence of these particles in the supernatants obtained from the surfaces of three dental implant systems. The elemental composition of the particles and the composition and structure of the "P" system dental implants themselves were analyzed. SIGNIFICANCE: The developed method of dynamic light scattering can be used to compare the stability of the oxide layer of standardized medical products manufactured on the basis of the TiO2 alloy.


Assuntos
Implantes Dentários , Ligas , Microscopia Eletrônica de Varredura , Óxidos , Propriedades de Superfície , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA