Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 23182, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848729

RESUMO

Previous study has shown the antimicrobial activities of mucus protein extracted from Anabas testudineus. In this study, we are interested in characterizing the anticancer activity of the A. testudineus antimicrobial peptides (AMPs). The mucus was extracted, fractioned, and subjected to antibacterial activity testing to confirm the fish's AMPs production. The cytotoxic activity of each fraction was also identified. Fraction 2 (F2), which shows toxicity against MCF7 and MDA-MB-231 were sent for peptide sequencing to identify the bioactive peptide. The two peptides were then synthetically produced and subjected to cytotoxic assay to prove their efficacy against cancer cell lines. The IC50 for AtMP1 against MCF7 and MDA-MB-231 were 8.25 ± 0.14 µg/ml and 9.35 ± 0.25 µg/ml respectively, while for AtMP2 it is 5.89 ± 0.14 µg/ml and 6.97 ± 0.24 µg/ml respectively. AtMP1 and AtMP2 treatment for 48 h induced breast cancer cell cycle arrest and apoptosis by upregulating the p53, which lead to upregulate pro-apoptotic BAX gene and downregulate the anti-apoptotic BCL-2 gene, consequently, trigger the activation of the caspase-3. This interaction was supported by docking analysis (QuickDBD, HPEPDOCK, and ZDOCK) and immunoprecipitation. This study provided new prospects in the development of highly effective and selective cancer therapeutics based on antimicrobial peptides.


Assuntos
Peptídeos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Peixes/metabolismo , Muco/metabolismo , Peptídeos/farmacologia , Animais , Apoptose , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Biologia Computacional/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Concentração Inibidora 50 , Células MCF-7 , Peptídeos/química , Mapeamento de Interação de Proteínas
2.
Artigo em Inglês | MEDLINE | ID: mdl-33737223

RESUMO

The ability of natural extracts to inhibit melanocyte activity is of great interest to researchers. This study evaluates and explores the ability of mutated Shiitake (A37) and wildtype Shiitake (WE) extract to inhibit this activity. Several properties such as total phenolic (TPC) and total flavonoid content (TFC), antioxidant activity, effect on cell and component profiling were conducted. While having no significant differences in total phenolic content, mutation resulted in A37 having a TFC content (1.04 ± 0.7 mg/100 ml) compared to WE (0.86 ± 0.9 mg/100 ml). Despite that, A37 extract has lower antioxidant activity (EC50, A37 = 549.6 ± 2.70 µg/ml) than WE (EC50 = 52.8 ± 1.19 µg/ml). Toxicity tests on zebrafish embryos show that both extracts, stop the embryogenesis process when the concentration used exceeds 900 µg/ml. Although both extracts showed pigmentation reduction in zebrafish embryos, A37 extract showed no effect on embryo heartbeat. Cell cycle studies revealed that WE significantly affect the cell cycle while A37 not. Further tests found that these extracts inhibit the phosphorylation of Glycogen synthase kinase 3 ß (pGSK3ß) in HS27 cell line, which may explain the activation of apoptosis in melanin-producing cells. It was found that from 19 known compounds, 14 compounds were present in both WE and A37 extracts. Interestingly, the presence of decitabine in A37 extract makes it very potential for use in the medical application such as treatment of melanoma, skin therapy and even cancer.


Assuntos
Antineoplásicos/farmacologia , Melanócitos/efeitos dos fármacos , Crista Neural/efeitos dos fármacos , Cogumelos Shiitake/química , Peixe-Zebra/embriologia , Animais , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Melanócitos/citologia , Melanoma/tratamento farmacológico
3.
Toxics ; 6(4)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304811

RESUMO

Xanthone is an organic compound mostly found in mangosteen pericarp and widely known for its anti-proliferating effect on cancer cells. In this study, we evaluated the effects of xanthone crude extract (XCE) and α-mangostin (α-MG) on normoxic and hypoxic human hepatocellular carcinoma (HepG2) cells and their toxicity towards zebrafish embryos. XCE was isolated using a mixture of acetone and water (80:20) and verified via high performance liquid chromatography (HPLC). Both XCE and α-MG showed higher anti-proliferation effects on normoxic HepG2 cells compared to the control drug, 5-fluorouracil (IC50 = 50.23 ± 1.38, 8.39 ± 0.14, and 143.75 ± 15.31 µg/mL, respectively). In hypoxic conditions, HepG2 cells were two times less sensitive towards XCE compared to normoxic HepG2 cells (IC50 = 109.38 ± 1.80 µg/mL) and three times less sensitive when treated with >500 µg/mL 5-fluorouracil (5-FU). A similar trend was seen with the α-MG treatment on hypoxic HepG2 cells (IC50 = 10.11 ± 0.05 µg/mL) compared to normoxic HepG2 cells. However, at a concentration of 12.5 µg/mL, the α-MG treatment caused tail-bend deformities in surviving zebrafish embryos, while no malformation was observed when embryos were exposed to XCE and 5-FU treatments. Our study suggests that both XCE and α-MG are capable of inhibiting HepG2 cell proliferation during normoxic and hypoxic conditions, more effectively than 5-FU. However, XCE is the preferred option as no malformation was observed in surviving zebrafish embryos and it is more cost efficient than α-MG.

4.
FASEB J ; 31(12): 5246-5257, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28798154

RESUMO

A saturated analog of the cytochrome P450-mediated ω-3-17,18-epoxide of ω-3-eicosapentaenoic acid (C20E) activated apoptosis in human triple-negative MDA-MB-231 breast cancer cells. This study evaluated the apoptotic mechanism of C20E. Increased cytosolic cytochrome c expression and altered expression of pro- and antiapoptotic B-cell lymphoma-2 proteins indicated activation of the mitochondrial pathway. Caspase-3 activation by C20E was prevented by pharmacological inhibition and silencing of the JNK and p38 MAP kinases (MAPK), upstream MAPK kinases MKK4 and MKK7, and the upstream MAPK kinase kinase apoptosis signal-regulating kinase 1 (ASK1). Silencing of the death receptor TNF receptor 1 (TNFR1), but not Fas, DR4, or DR5, and the adapters TRADD and TNF receptor-associated factor 2, but not Fas-associated death domain, prevented C20E-mediated apoptosis. B-cell lymphoma-2 homology 3-interacting domain death agonist (Bid) cleavage by JNK/p38 MAPK linked the extrinsic and mitochondrial pathways of apoptosis. In further studies, an antibody against the extracellular domain of TNFR1 prevented apoptosis by TNF-α but not C20E. These findings suggest that C20E acts intracellularly at TNFR1 to activate ASK1-MKK4/7-JNK/p38 MAPK signaling and to promote Bid-dependent mitochondrial disruption and apoptosis. In in vivo studies, tumors isolated from C20E-treated nu/nu mice carrying MDA-MB-231 xenografts showed increased TUNEL staining and decreased Ki67 staining, reflecting increased apoptosis and decreased proliferation, respectively. ω-3-Epoxy fatty acids like C20E could be incorporated into treatments for triple-negative breast cancers.-Dyari, H. R. E., Rawling, T., Chen, Y., Sudarmana, W., Bourget, K., Dwyer, J. M., Allison, S. E., Murray, M. A novel synthetic analogue of ω-3 17,18-epoxyeicosatetraenoic acid activates TNF receptor-1/ASK1/JNK signaling to promote apoptosis in human breast cancer cells.


Assuntos
Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Neoplasias da Mama/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , MAP Quinase Quinase Quinase 5/genética , Camundongos , Camundongos Endogâmicos BALB C , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor fas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
J Med Chem ; 57(17): 7459-64, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25144895

RESUMO

ω-3-17,18-Epoxyeicosapentaenoic acid decreases cell proliferation and activates apoptosis, whereas its regioisomers stimulate growth. We evaluated synthetic ω-3 epoxides of saturated fatty acids as antiproliferative and pro-apoptotic agents in MDA-MB-231 breast cancer cells. The epoxides, but not their urea, amide, or carbamate isosteres, impaired ATP production, enhanced caspase-3 activity, and activated c-jun-N-terminal-kinase signaling, leading to cyclin D1 down-regulation and cell cycle arrest in G1-phase. Fatty acid ω-3 monoepoxides may represent a novel class of antitumor agents.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Trifosfato de Adenosina/biossíntese , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Ativação Enzimática/efeitos dos fármacos , Compostos de Epóxi/síntese química , Compostos de Epóxi/química , Compostos de Epóxi/farmacologia , Ácidos Graxos Ômega-3/síntese química , Ácidos Graxos Ômega-3/química , Feminino , Humanos , Immunoblotting , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Modelos Químicos , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos
6.
Br J Pharmacol ; 171(8): 2051-66, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24111728

RESUMO

The mitochondrion plays an important role in the production of energy as ATP, the regulation of cell viability and apoptosis, and the biosynthesis of major structural and regulatory molecules, such as lipids. During ATP production, reactive oxygen species are generated that alter the intracellular redox state and activate apoptosis. Mitochondrial dysfunction is a well-recognized component of the pathogenesis of diseases such as cancer. Understanding mitochondrial function, and how this is dysregulated in disease, offers the opportunity for the development of drug molecules to specifically target such defects. Altered energy metabolism in cancer, in which ATP production occurs largely by glycolysis, rather than by oxidative phosphorylation, is attributable in part to the up-regulation of cell survival signalling cascades. These pathways also regulate the balance between pro- and anti-apoptotic factors that may determine the rate of cell death and proliferation. A number of anti-cancer drugs have been developed that target these factors and one of the most promising groups of agents in this regard are the lipid-based molecules that act directly or indirectly at the mitochondrion. These molecules have emerged in part from an understanding of the mitochondrial actions of naturally occurring fatty acids. Some of these agents have already entered clinical trials because they specifically target known mitochondrial defects in the cancer cell.


Assuntos
Morte Celular/efeitos dos fármacos , Ácidos Graxos/farmacologia , Mitocôndrias/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Fosfolipídeos/farmacologia , Trifosfato de Adenosina/biossíntese , Anticarcinógenos/farmacologia , Morte Celular/fisiologia , Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Ácidos Graxos/fisiologia , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA